Holooly Plus Logo

Question 18.PS.11: Electrolysis of Aqueous NaOH Predict the results of passing ......

Electrolysis of Aqueous NaOH

Predict the results of passing a direct electrical current through an aqueous solution of NaOH. Calculate the cell potential.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The net cell reaction is 2 H_2O(\ell) → 2 H_2(g) + O_2(g). Hydrogen is produced at the cathode and oxygen is produced at the anode. The cell potential is – 1.23 V.

Strategy and Explanation   First, list all the species in the solution: Na^+, OH^-, and H_2O. Next, use Table 18.1 to decide which species can be oxidized and which can be reduced, and note the standard reduction potential of each possible half-reaction.

Reductions:

Na^+(aq) + e^- → Na(s)                 E^\circ_{cathode} = – 2.71  V

2 H_2O(\ell) + 2 e^- → H_2(g) + 2 OH^-(aq)                  E^\circ_{athode} = – 0.83  V

Oxidations:

4 OH^-(aq) → O_2(g) + 2 H_2O(\ell) + 4 e^-                 E^\circ_{anode} =+ 0.40  V

6 H_2O(\ell) → O_2(g) + 4 H_3O^+(aq) + 4 e^-                  E^\circ_{anode} = + 1.229  V

Water will be reduced to H_2 at the cathode because the standard reduction potential for this half-reaction is more positive. At the anode, OH^- will be oxidized because the standard reduction potential is smaller than that for water. The net cell reaction is

2 H_2O(\ell) → 2 H_2(g) + O_2(g)

and the cell potential under standard conditions is

E^\circ_{cell} = E^\circ_{cathode} – E^\circ_{anode} = (- 0.83  V)  –  (+ 0.40  V) = – 1.23  V

Table 18.1   Standard Reduction Potentials in Aqueous Solution at 25 °C*
Reduction Half-Reaction E° (V)
F_2(g) + 2 e^- →2 F^-(aq) + 2.87
H_2O_2(aq) + 2 H_3O^+(aq) + 2 e^- →4 H2O(\ell) + 1.77
PbO_2(s) + SO_4^{2-} (aq) + 4 H_3O^+(aq) +2 e^- →PbSO_4 (s) +6 H_2O(\ell) + 1.685
MnO_4^-(aq) + 8 H_3O^+(aq)  + 5 e^- →Mn^{2+}(aq) +12 H_2O(\ell) + 1.51
Au^{3+}(aq) + 3 e^- →Au(s) + 1.50
Cl_2(g) + 2 e^- →2 Cl^-(aq) + 1.358
Cr_2O_7^{2-}(aq) + 14 H_3O^+(aq) + 6 e^- →2 Cr^{3+}(aq) + 21 H_2O(\ell) + 1.33
O_2(g) + 4 H_3O^+(aq) + 4 e^- →6 H_2O(\ell) + 1.229
Br_2 (\ell) + 2 e^- →2 Br^-(aq) + 1.066
NO_3^-(aq) + 4 H_3O^+(aq) + 3 e^- →NO(g) + 6 H_2O(\ell) + 0.96
OCl^-(aq) + H_2O(\ell) + 2 e^- →Cl^-(aq) + 2 OH^-(aq) + 0.89
Hg^{2+}(aq) + 2 e^- →Hg(\ell) + 0.855
Ag^+(aq) + e^- →Ag(s) + 0.7994
Hg_2^{2+}(aq) + 2 e^- →2 Hg(\ell) + 0.789
Fe^{3+}(aq) + e^- →Fe^{2+}(aq) + 0.771
I_2 (s) + 2 e^- →2 I^-(aq) + 0.535
O_2(g) + 2 H_2O(\ell) + 4 e^- →4 OH^-(aq) + 0.403
Cu^{2+}(aq) + 2 e^- →Cu(s) + 0.337
Sn^{4+}(aq) + 2 e^- →Sn^{2+}(aq) + 0.15
2 H_3O^+(aq) + 2 e^- →H_2(g) + 2 H_2O(\ell) 0.00
Sn^{2+}(aq) + 2 e^- →Sn(s) – 0.14
Ni^{2+}(aq) + 2 e^- →Ni(s) – 0.25
PbSO_4 (s) + 2 e^- →Pb(s) + SO_4^{2-}(aq) – 0.356
Cd^{2+}(aq) + 2 e^- →Cd(s) – 0.403
Fe^{2+}(aq) + 2 e^- →Fe(s) – 0.44
Zn^{2+}(aq) + 2 e^- →Zn(s) – 0.763
2 H_2O(\ell) + 2 e^- →H_2(g) + 2 OH^-(aq) – 0.8277
Al^{3+}(aq) + 3 e^- →Al(s) – 1.66
Mg^{2+}(aq) + 2 e^- →Mg(s) – 2.37
Na^+(aq) + e^- →Na(s) – 2.714
K^+(aq) + e^- →K(s) – 2.925
Li^+(aq) + e^- →Li (s) – 3.045
*In volts (V) versus the standard hydrogen electrode.

Related Answered Questions