Holooly Plus Logo

Question 7.2: DFT of a periodically repeated rectangular pulse 2 Find the ......

DFT of a periodically repeated rectangular pulse 2

Find the DFT of x[n] = (u[n − n_0 ] − u[n − n_1]) ∗ δ_{N0} [n], 0≤ n_1 − n_0 ≤ N_0.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

From Example 7.1 we already know the DFT pair

\left(\mathrm{u}[n]-\mathrm{u}\left[n-n_x\right]\right) * \delta_{N_0}[n] \xleftrightarrow[N_0]{\mathcal{D F} \mathcal{T}} e^{-j \pi k\left(n_x-1\right) / N_0} \frac{\sin \left(\pi k n_x / N_0\right)}{\sin \left(\pi k / N_0\right)}, 0 \leq n_X \leq N_0

If we apply the time-shifting property

\mathrm{x}\left[n-n_y\right] \xleftrightarrow[N]{\mathcal{D F} \mathcal{T}} \mathrm{X}[k] e^{-j 2 \pi k n_y / N}

to this result we have

\begin{aligned} & \left(\mathrm{u}\left[n-n_y\right]-\mathrm{u}\left[n-n_y-n_x\right]\right) * \delta_{N_0}[n] \xleftrightarrow[N_0]{\mathcal{D F} \mathcal{T}} e^{-j \pi k\left(n_x-1\right) / N_0} e^{-j 2 \pi k n_y / N_0} \frac{\sin \left(\pi k n_x / N_0\right)}{\sin \left(\pi k / N_0\right)}, \\ & 0 \leq n_x \leq N_0 \\ & \left(\mathrm{u}\left[n-n_y\right]-\mathrm{u}\left[n-\left(n_y+n_x\right)\right]\right) * \delta_{N_0}[n] \xleftrightarrow[N_0]{\mathcal{D F} \mathcal{T}} e^{-j \pi k\left(n_x+2 n_y-1\right) / N_0} \frac{\sin \left(\pi k n_x/ N_0\right)}{\sin \left(\pi k / N_0\right)}, \\ & 0 \leq n_x \leq N_0 \\ & \end{aligned}

Now, let n_0 = n_y and let n_1 = n_y + n_x .

\begin{aligned} &\left(\mathrm{u}\left[n-n_0\right]-\mathrm{u}\left[n-n_1\right]\right) * \delta_{N_0}[n] \xleftrightarrow[N_0]{\mathcal{D F} \mathcal{T}}e^{-j \pi k\left(n_0+n_1-1\right) / N} \frac{\sin \left(\pi k\left(n_1-n_0\right) / N_0\right)}{\sin \left(\pi k / N_0\right)}, \\ & \quad 0 \leq n_1-n_0 \leq N_0 \end{aligned}

Consider the special case in which n_0 + n_1 = 1. Then

\mathrm{u}\left[n-n_0\right]-\mathrm{u}\left[n-n_{\mathrm{l}}\right] * \delta_{N_0}[n] \xleftrightarrow[N_0]{\mathcal{D F} \mathcal{T}} \frac{\sin \left(\pi k\left(n_1-n_0\right) / N_0\right)}{\sin \left(\pi k / N_0\right)}, n_0+n_1=

This is the case of a rectangular pulse of width n_1 − n_0 = 2n_1 −1, centered at n = 0. This is analogous to a continuous-time, periodically repeated pulse of the form

       T_0  rect( t/ w) ∗δ_{T_0} (t).

Compare their harmonic functions.

\begin{gathered} T_0 \operatorname{rect}(t / w) * \delta_{T_0}(t) \xleftrightarrow[T_0]{\mathcal{FS}} w \operatorname{sinc}\left(w k / T_0\right)=\frac{\sin \left(\pi w k / T_0\right)}{\pi k / T_0} \\ \mathrm{u}\left[n-n_0\right]-\mathrm{u}\left[n-n_1\right] * \delta_{N_0}[n] \xleftrightarrow[N_0]{\mathcal{D F} \mathcal{T}}\frac{\sin \left(\pi k\left(n_1-n_0\right) / N_0\right)}{\sin \left(\pi k / N_0\right)}, \quad n_0+n_1=1 \end{gathered}

The harmonic function of T_0 \operatorname{rect}(t / w) * \delta_{T_0}(t) is a sinc function. Although it may not yet be obvious, the harmonic function of u[n − n_0 ] − u[n − n_1] is a periodically repeated sinc function.

Related Answered Questions

Question: 7.6

Verified Answer:

The signal energy of a signal is defined as [latex...