Holooly Plus Logo

Question 7.7: Inverse DTFT of a periodically repeated rectangle Find the i......

Inverse DTFT of a periodically repeated rectangle

Find the inverse DTFT of \mathbf{X}(F)=\operatorname{rect}(w F)*\delta_{1}(F),w\gt 1 using the definition of the DTFT

{{X}}[n]=\int_{1}{X}(F)e^{j2\pi F n}\,d F=\int_{1}\mathrm{rect}(w F)*\delta_{1}(F)e^{j2\pi F n}\,d F

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Since we can choose to integrate over any interval in F of width one, let’s choose the simplest one

\mathbf{x}[n]=\int\limits_{-1/2}^{1/2}\operatorname{rect}(w F)\ast\delta_{1}(F)e^{j2\pi F n}\,d F

In this integration interval, there is exactly one rectangle function of width 1/w (because w > 1) and

X[n]=\int\limits_{-1/2w}^{1/2w}e^{j2\pi F n}\,d F=2\int\limits_{0}^{1/2w}\cos(2\pi F n)\,d F={\frac{\sin(\pi n/w)}{\pi n}}={\frac{1}{w}}sinc\left\lgroup\frac{n}{w}\right\rgroup .      (7.21)

From this result we can also establish the handy DTFT pair (which appears in the table of DTFT pairs),

\mathrm{sinc}(n/w)\overset{\mathcal F}{\longleftrightarrow } w\,\mathrm{rect}(w F)^{\ast}\,\delta_{1}(F),\quad w\gt 1

or

\mathrm{sinc}(n/w)\overset{\mathcal F}{\longleftrightarrow } w\,\sum\limits_{k=-\infty }^{\infty }{} \mathrm{rect}(w(F-k)),\quad w\gt 1

or, in radian frequency form, using the convolution property,

\mathbf{y}(t)=\mathbf{x}(t)\ast\mathbf{h}(t)\Rightarrow\mathbf{y}(a t)=|a|\mathbf{x}(a t)*\mathbf{h}(a t)

we get

\mathrm{sinc}(n/w)\overset{\mathcal F}{\longleftrightarrow } \mathrm{w\,rect}(w\Omega/2\pi)\ast\delta_{2\pi}(\Omega),\quad w\gt 1

or

\mathrm{sinc}(n/w)\stackrel{\mathcal F}{\longleftrightarrow }w\sum_{k=-\infty}^{\infty}\mathrm{rect}(w(\Omega-2\pi k)/2\pi),\quad w\gt 1.

(Although these Fourier pairs we derived under the condition w > 1 to make the inversion integral (7.21) simpler, they are actually also correct for w ≤ 1.)

Related Answered Questions

Question: 7.6

Verified Answer:

The signal energy of a signal is defined as [latex...