Holooly Plus Logo

Question 2.3: Draining of a Tank: A “deformable C.∀.” because the fluid le......

Draining of a Tank: A “deformable C.∀.” because the fluid level decreases and hence we have a shrinking C.∀. with moving C.S

Consider a relatively small tank of diameter D and initially filled to height \rm h_0. The fluid drains through a pipe of radius \rm(r_0) according to:

\rm u(r)=2\bar{u} [1-(\frac{r}{r_0} )^2]                                    (see Example 2.10)

where \rm\bar{u} =\sqrt{2gh} (see Example 2.1), \rm r_0 is the outlet pipe radius, and r is its variable radius,  \rm 0 ≤ r ≤ r_0 . The fluid depth was \rm h_0 at time t = 0.

Find h(t) for a limited observation time Δt.

Control Volume Assumptions Sketch
• Transient incompressib le flow
• Stationary C.∀. (tank) but deforming liquid volume
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Equation (2.8b) can be expanded for this problem with ∀_{C.∀.}=\frac{D^2\pi }{4}h to

\rm\frac{d∀}{dt} \big|_{C.∀.}=-\iint\limits_{C.S.} \vec{v}\cdot d\vec{A}                            (2.8b)

\rm(\frac{{ D}^{2}\pi}{4})\frac{{dh}}{{dt}}=-\int_{0}^{r_0}{u}({r})\,{dA}                              (E.2.3.1)

where dA = 2πrdr is the variable ring element as part of the crosssectional area of the outlet pipe. Thus,

{\frac{\mathrm{dh}}{\mathrm{dt}}}=-{\frac{16\,{\sqrt{2\mathrm{gh}}}}{\mathrm{D}^{2}}}\int_{0}^{r_0}\left[1-({\frac{r}{r_{0}}})^{2}\right]\mathrm{rdr}                        (E.2.3.2a)

or

\rm\frac{{d} h}{{d}t}=-4\sqrt{2{g}}\,(\frac{{r_{0}}}{ D})^{2}\sqrt{{h}}                       (E.2.3.2b)

subject to h (t = 0) = \rm h_0. Separation of variables and integration yields:

\rm\sqrt{h_{0}}\,-\,\sqrt{h}\,=\,\sqrt{8g}(\frac{r_{0}}{D})^{2}\,{t}

or

\rm{\frac{\ h({ t})}{ h_0}}=\left[1-\sqrt{\frac{8{g}}{{h}_{0}}}(\frac{{r}_{0}}{{{{{D}}}}})^{2}{t}\right]^{2}                   (E.2.3.3)

Graph:

Comments:
• The standard assumption that h = const. <reservoir> is only approximately true when \rm r_0 / D < 0.1

• A variable speed dh/dt, i.e., accelerated tank-draining, occurs when \rm r_0/ D > 0.2

example 2.3

Related Answered Questions