Holooly Plus Logo

Question 2.11: Thermal Pipe Flow ( qwall = c ) Consider Poiseuille flow (se......

Thermal Pipe Flow ( \rm{q_{wall} = \cancel c} )

Consider Poiseuille flow (see Example 2.10) where a uniform heat flux, \rm{q_w} , is applied to the wall of a pipe with radius r_o.

(A) Set up the governing equations for the fluid temperature assuming thermally fully-developed flow, i.e.,

{\frac{T_{w}-T}{T_{w}-T_{m}}}\equiv\Theta\!{\left({\frac{r}{r_{0}}}\right)}\qquad\qquad\qquad(\operatorname{E}.2.11.1)

where \rm{T_w(x)} is the wall temperature, T(r, x) is the fluid temperature, and \rm{T_m(x)} is the cross-sectionally averaged temperature, i.e.,

\mathrm{T}_{\mathrm{m}}={\frac{1}{\mathrm{\bar u A}}}\int_A\mathrm{uTdA}~~~~~~~~~~~~~~~~~~~~~~~(E.2.11.2)

Note that Θ = Θ(r) only, describing thermally fully-developed flow.

(A) Solve a reduced form of the heat transfer equation (Eq. 2.44) and develop an expression for the Nusselt number, defined as:

\begin{array}{c c}\rm{{{\frac{\partial T}{\partial t}+(\vec{v}\cdot\nabla){\mathrm{T}}=\alpha\nabla^{2}\mathrm{T}+\frac{\mu}{\rho c_{\mathrm{p}}}\Phi}}}&{{\qquad\qquad}}&{{\qquad(2.44)}}\end{array}

\mathrm{Nu}=\frac{2\mathrm{r_{0}}}{\mathrm{k}}{\frac{\mathrm{q}_{\mathrm{{w}}}}{\mathrm{T_{w}}-\mathrm{T_{m}}}}:={\frac{\mathrm{hD}}{\mathrm{k}}}{\mathrm{~\qquad}\qquad(\mathrm{E}.2.11.3\mathrm{a},\,\mathrm{b})}

where k is the fluid conductivity and D is the pipe diameter.

\mathrm{u}(\mathrm{r})={\frac{1}{4\mu}}({\frac{\Delta\mathrm{p}}{\mathrm{L}}})(\mathrm{r}_{0}^{2}-\mathrm{r}^{2})=\mathrm{u}_{\mathrm{max}}\!\left[1-({\frac{\mathrm{r}}{\mathrm{r}_{0}}})^{2}\right]\qquad\qquad(\mathrm{E}.2.10.3)

Sketch Assumptions Concept
 

As stated, i.e.,  

Reduced heat transfer equation (Eq. (2.44)) based on assumptions

• u(r) as in Eq. (E.2.10.3)
• ∂T / ∂t = 0 <steady-state>
\rm{(\vec v \cdot \nabla)}T⇒u∂T/∂x
\rm{\alpha \nabla T\Rightarrow \frac{\alpha }{r}\frac{\partial}{\partial r}  (r\frac{\partial T}{\partial r} )}
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(A) With the result of Example 2.10 and the reduced heat transfer equation in cylindrical coordinates from App. A (see also list of assumptions), we have:

\frac{{\mathrm{u(r)}}}{\alpha}\frac{\partial T}{\partial \rm x}={\frac{1}{r}}{\frac{{\partial}}{\partial r}}(r{\frac{{\partial}T}{\partial r}})\qquad\qquad\qquad({\mathrm{E.2.11.4}})

(B) Employing the dimensionless temperature profile \Theta (\frac{r}{r_0} )\equiv \Theta (\hat r) given as Eq. (E.2.11.1), we can rewrite Eq. (E.2.11.4) as

-\,2\,{\frac{\mathrm{hD}}{{\rm k}}}(1-\hat{\rm r}^{2})={\frac{\mathrm{d}^{2}\Theta}{\mathrm{d}\hat{\rm r}^{2}}}+{\frac{1}{{\hat{\rm r}}}}{\frac{\mathrm{d}\Theta}{\mathrm{d}\hat{\rm r}}}\qquad\qquad\qquad\qquad(\mathrm{E}.2.11.5)

Specifically,

• For \mathrm{q_{w}}=\cancel{c},\,\mathrm{}{\frac{\partial T}{\partial\mathrm{x}}}={\frac{\mathrm{d{T_{w}}}}{\mathrm{d}\mathrm{x}}}={\frac{\mathrm{d{T_{m}}}}{\mathrm{dx}}}={\frac{2}{\mathrm{r_{0}}}}{\frac{\mathrm{q_{w}}}{\mathrm{ρc_{0}\overline{{{u}}}}}}=\cancel{c}\,;\qquad(\mathrm{E}.2.11.6a-c)

• As stated, \mathrm{hD/k}\equiv\mathrm{Nu_{D}}:={\frac{\rm D}{\mathrm{k}}}{\frac{\rm q_{w}}{\mathrm{T_{w}}-\mathrm{T}_{m}}}=\cancel c;\qquad\qquad(\mathrm{E}.2.11.7a,b)

• And with \rm{d\Phi /d\hat r} being finite at \rm{\hat r =0}, we obtain

\rm T-\mathrm{T}_{w}=-(\mathrm{T}_{w}-\mathrm{T}_{\mathrm{m}})\mathrm{Nu}_{\mathrm{D}}\left\lgroup\frac{3}{8}-\frac{\hat{r}^{2}}{2}+\frac{\hat{r}^{4}}{8}\right\rgroup

Now, by definition

\mathrm{T_{w}-T_{m}=\frac{2\pi}{\pi\mathrm{r_{0}^2\bar u}}\int_0^{r_0}{(T_{w}-\mathrm{T})\,u(r)r d r}\,\qquad\qquad\qquad(\mathrm{E}.2.11.8)}

so that, when combining both equations and integrating, we have

1=4\mathrm{N}\mathrm{u}_{\mathrm{D}}\int_0^1{\left\lgroup{\frac{3}{8}}-{\frac{\hat{\mathrm{r}}^{2}}{2}}+{\frac{\hat{\mathrm{r}}^{4}}{8}}\right\rgroup}(1-\hat{\mathrm{r}}^{2}){\hat{\mathrm{r}}}\,\mathrm{d}\hat{\mathrm{r}}

from which we finally obtain:

\mathrm{Nu}_{\mathrm{D}}=\frac{48}{11}=4.36\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\qquad(E.2.11.9)

Comment: It is interesting to note that for hydrodynamically and thermally fully-developed flow in a tube, subject to a constant wall heat flux, the Nusselt number (or the heat transfer coefficient) is constant. The same holds for the isothermal wall condition; however, the Nu-value is lower (see Kleinstreuer 1997; or Bejan 2002).

Related Answered Questions