Holooly Plus Logo

Question 2.7: Rocket with Air Drag Set up the equation of motion for a ver......

Rocket with Air Drag

Set up the equation of motion for a vertically accelerating rocket using: (a) Newton’s law and (b) the momentum RTT. Clearly, the weight of the missile changes as \rm W(t) = m_M g = W_0 – g\dot{m}_f t, where \rm\dot m_f is the fuel mass flow rate (i.e., fuel consumption) exiting at \rm v_e relative to the missile. Assume that \rm \dot{m}_f v_e = F_{thrust} = constant.   The air drag is \rm F_D = ρC_D D^2 \mathrm{v}^2 where \rm C_D is the drag coefficient, D is the missile’s mean diameter and v(t) is the missile velocity. Then, (c) neglecting air drag, find the rocket’s initial acceleration and velocity after 3 s for \rm \dot{m}_f= 5\,kg / s, ~and~ v_e =3,500 \,m/ s.

\rm\sum\vec F=\dot m(\alpha _2\vec v_2-\alpha _1\vec v_1)                          (2.15)

Concepts Assumptions Sketch
• Newton’s second law for a “particle” • Initial phase acceleration is constant
• Use of Eq. (2.15) • Constant uniform v_e and constant \dot{m}_f
• Negligible momentum change inside missile, i.e., \frac{\partial}{\partial t } \approx 0
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) Particle Dynamics

\rm m{\frac{\mathrm{d}{v}}{\mathrm{d}t}}=\Sigma \vec{{{F}}}_{{ext}}=-\mathrm{W}(\mathrm{t})+\mathrm{\mathrm{F}}_{\mathrm{thrust}}-\mathrm{F}_{\mathrm{Drag}}(\mathrm{t})                  (E.2.7.1)

where

\rm W(t)=\underbrace{({m_{0}-\dot{m}_{f}t})}_{m_{_M}(t)}{g},~~F_{T}\rm =\dot{m}_{{f}}{v_{e}\,\text{and}\,F_{D}}={ρ C_{D}D}^{2}{v^{2}}

Equation (E.2.7.1) is a nonlinear first-order ODE to be solved for v(t) with a RUNGE-KUTTA routine.

(b) Momentum Conservation (x momentum of Eq. (2.14b)):

\rm m\frac{D\vec{\bf v}}{Dt} =\Sigma \vec{\bf F}_B+\Sigma \vec{\bf F}_S-\int\limits_{C.\forall.}\vec{\bf a}_{rel}dm=\frac{d}{dt} \int\limits_{C.\forall.}\rho\vec{\bf v}d\forall+\int\limits_{C.\forall.}\vec{\bf v}\rho\vec{\bf v}_{rel}\cdot dA      (2.14b)
\rm F_{B,z}=F_{S,z}-\int\limits_{C.∀.}a_zdm=\frac{\partial}{\partial t}\int\limits_{C.∀.}v_z\rho d\forall+ \int\limits_{C.∀.}\mathrm{v}_zρ\vec{\mathrm{v}}_{rel} \cdot d\vec{A}                   (E.2.7.2)

With the given information and based on the listed assumptions, Eq. (E.2.7.2) can be reduced to:

\rm -\mathrm{W}\,\mathrm{F}_{\mathrm{D}}-\mathrm{a}\mathrm{m}_{_{M}}=-\mathrm{v}_{e}\int\limits_{C.S.}(ρ\mathrm{v}_{e}\mathrm{d}\mathrm{A})=-\mathrm{v}_{e}\mathrm{\dot{m}}_{\mathrm{f}}                    (E.2.7.3)

Neglecting \rm F_D and inserting W and \rm m_{_M} yields the initial-phase rocket acceleration

\rm a=\frac{\dot{m}_f\mathrm{v}_e}{m_0-\dot{m}_ft}-\mathrm{g}                           (E.2.7.4)

(c) Numerical Results

\mathrm{At}\,\mathrm{t}=0:\ \mathrm{a}_{0}={\frac{\mathrm{\dot{m}}_{\mathrm{f}}\mathrm{v}_{e}}{\mathrm{m}_{0}}}-\mathrm{g}:=34\, \mathrm{m}/\mathrm{s}^{2}

In order to find the rocket velocity, we recall that

\rm a=\frac{d\mathrm{v}}{dt} =\frac{\dot{m}_f\mathrm{v}_e}{m_0-\dot{m}_ft}-\mathrm{g}

so that after integration

\mathrm{v}=-\mathrm{v_{e}}\ln(\frac{\mathrm{m_{0}}-\dot{m}_{f}\mathrm{t}}{\mathrm{m_{0}}})-\mathrm{gt}                               (E.2.7.5)

and at t = 3 s:

\rm{v}\Big|_{3s}=104.34\,m/s

Related Answered Questions