Holooly Plus Logo

Question 2.1: Volumetric Flow Rate Consider a liquid-filled tank (depth H)......

Volumetric Flow Rate
Consider a liquid-filled tank (depth H) with a horizontal slot outlet (height 2h and width w) where the locally varying outlet velocity can be expressed as (see Sketch):

\rm u\approx \sqrt{2g(H-z)}

A constant fluid mass flow rate, in \rm\dot m_{in} , is added to maintain the liquid depth H. The z-coordinate indicates the location of the center of the outlet. Find  Q_{outlet} as a function of H and h.

Concepts Assumptions Sketch
• Mass RTT • Steady (why?) incompressible flow
• Fixed, nondeforming C. ∀ . • Outflow velocity u(z) u(z)=\sqrt{2g(H-z)} base on Toricelli’s law
• Toricelli’s law
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The u(z)-equation will be derived in Sect. 2.3.2. Here, we apply a reduced version of Eq. (2.3). Specifically, with \rm\frac{\partial}{\partial t} \iiint{ρd∀} =0 (steady-state because no system parameter changes with time), we have with ρ =¢ (incompressible fluid):

\rm 0=\frac{\partial}{\partial t} \iiint\limits_{C.∀.} ρd∀+\iint\limits_{C.S.}ρ\vec{v} \cdot d\vec{A}                         (2.3)

\rm 0=\iint \limits_{c.s.}\vec{v}\cdot d\vec{A}                               (E.2.1.1)

Fluid mass crosses the control surface at two locations (see graph). Recalling that “inflow” is negative and “outflow” positive (see Fig. 2.2b), Eq. (E.2.1.1) reads with \rm\frac{\dot m _{in}}{ρ} =Q, ~Q+\iint\limits_{A_{slot}} \vec{v}\cdot d\vec{A}=0 or \rm  Q=\int\limits_{A} v_ndA               (E.2.1.2)

Here, \rm Q\equiv Q_{outlet},\,v_n=u(z)=\sqrt{2g(H-z)} and dA = wdz so that

\rm Q_{outlet}=w\sqrt{2g} \int_{-h}^{h}{\sqrt{H-z}dz }

which yields

\rm Q_{outlet}=K[(H+h)^{3/2}-(H-h)^{3/2}]                       (E.2.1.3)

where \rm K\equiv \frac{2}{3}w\sqrt{2g} .

For h << H, as it is often the case, Eq. (E.2.1.3) can be simplified to (see HW Assignment):

\rm{Q_{{outlet}}\approx2~w h\sqrt{2g H} }                                  (E.2.1.4)

Comment: Equation (E.2.1.4) is known as Toricelli’s law.

fig. 2.2b
example 2.1

Related Answered Questions