Holooly Plus Logo

Question 12.10: Find all distributions y such that a) y' = 0; b) y^(m) = 0, ......

Find all distributions y such that

a) y’ = 0;       b) y^{(m)}=0,    m ∈ N.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

a) Let y \in \mathcal {D} ^{\prime}( \mathbf{R}) be a solution of the given equation, i.e.,

\left\langle y^{\prime}, \varphi\right\rangle=0 \text { for every } \varphi \in \mathcal {D} ( \mathbf{R}) \text {. }        (12.30)

Let χ be a fixed test function with the property

\int_{-\infty}^{+\infty} \chi(x) d x=1 .

Now every \varphi \in \mathcal {D} ( \mathbf{R}) can be written in the form

\varphi(x)=\chi(x) \cdot \int_{-\infty}^{+\infty} \varphi(x) d x+\psi^{\prime}(x) \quad(x \in \mathbf{R} )

for some test function \psi \text {, depending on } \varphi (prove that). Then we have

\langle y, \varphi\rangle=\left\langle y, \chi(x) \cdot \int_{-\infty}^{+\infty} \varphi(x) d x+\psi^{\prime}(x)\right\rangle=\int_{-\infty}^{+\infty} \varphi(x) d x \cdot\langle y, \chi\rangle+\left\langle y, \psi^{\prime}\right\rangle .

By assumption we have

0=-\left\langle y^{\prime}, \psi\right\rangle=\left\langle y, \psi^{\prime}\right\rangle

then putting C=\int_{-\infty}^{+\infty} \psi(x) d x, we obtain

\langle y, \varphi\rangle=C \cdot \int_{-\infty}^{+\infty} \varphi(x) d x=\langle C, \varphi\rangle

for every \varphi \in \mathcal {D} ^{\prime}( \mathbf{R}). Thus the sought after solution is

y = C,

where C is an arbitrary constant.

Answer. b)y(x)=C_0+C_1 x+\cdots+C_{m-1} x^{m-1}, \text { where } C_1, C_2, \ldots, C_n are arbitrary constants.

Related Answered Questions

Question: 12.14

Verified Answer:

a) Let \varphi \in \mathcal {D} ( \mathbf{R...