Holooly Plus Logo

Question 12.18: Prove that the function E : R × R → R given by E(x,t) = 1/2 ......

Prove that the function E : R × RR given by

E(x, t)=\frac{1}{2} H(t-|x|)= \begin{cases}\frac{1}{2} & \text { if } t>|x| \\ 0 & \text { if } t<|x|\end{cases}      (12.36)

is the fundamental solution of the one-dimensional wave equation. In other words, it holds

\frac{\partial^2 E}{\partial t^2}-\frac{\partial^2 E}{\partial x^2}=\delta

As before, H is the Heaviside’s function, i.e., the characteristic function of the interval (0, +∞).

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Let us note first that E from (12.36) is a locally integrable function on the set 0 = {(x, t)| x ∈ R, t > 0}, and thus defines a regular distribution which we simply denote also by E. For any \varphi \in \mathcal {D}( \mathbf{R}) it holds

\begin{aligned}\left\langle\frac{\partial^2 E}{\partial t^2}-\frac{\partial^2 E}{\partial x^2}, \varphi\right\rangle= & \frac{1}{2} \int_{-\infty}^{+\infty} \int_{|x|}^{+\infty} \frac{\partial^2 \varphi}{\partial t^2} d t d x-\frac{1}{2} \int_0^{+\infty} \int_{-t}^t \frac{\partial^2 \varphi}{\partial x^2} d x d t \\= & \frac{1}{2} \int_{-\infty}^{+\infty}\left(\left.\frac{\partial \varphi(x, t)}{\partial t}\right|_{t=|x|} ^{t=\infty}\right) d x-\frac{1}{2} \int_0^{+\infty}\left(\left.\frac{\partial \varphi(x, t)}{\partial x}\right|_{x=-t} ^{x=t}\right) d t \\= & -\frac{1}{2} \int_0^{+\infty} \frac{\partial \varphi(x, x)}{\partial t} d x-\frac{1}{2} \int_{-\infty}^0 \frac{\partial \varphi(x,-x)}{\partial t} d x \\& \quad-\frac{1}{2} \int_0^{+\infty} \frac{\partial \varphi(t, t)}{\partial x} d t+\frac{1}{2} \int_0^{+\infty} \frac{\partial \varphi(-t, t)}{\partial x} d t .\end{aligned}

Putting y = -x in the second integral and taking y instead of x in the other three integrals of the last right-hand side, we get

\left\langle\frac{\partial^2 E}{\partial t^2}-\frac{\partial^2 E}{\partial x^2}, \varphi\right\rangle=-\frac{1}{2} \int_0^{+\infty} \frac{d}{d y}(\varphi(y, y)) d y-\frac{1}{2} \int_0^{+\infty} \frac{d}{d y}(\varphi(-y, y)) d y        ( 12.37)

From (12.37) it finally follows

\left\langle\frac{\partial^2 E}{\partial t^2}-\frac{\partial^2 E}{\partial x^2}, \varphi\right\rangle=\frac{1}{2} \varphi(0,0)+\frac{1}{2} \varphi(0,0)=\langle\delta, \varphi\rangle.

Related Answered Questions

Question: 12.14

Verified Answer:

a) Let \varphi \in \mathcal {D} ( \mathbf{R...
Question: 12.10

Verified Answer:

a) Let y \in \mathcal {D} ^{\prime}( \mathb...