Holooly Plus Logo

Question 12.8: Let us denote ej(x) = exp(2jπιx) (j ∈ Z), D^α the derivation......

Let us denote

e_j(x)=\exp (2 j \pi \imath x) \quad(j \in \mathbf{Z} ),

D^\alpha \text { the derivation operator in the sense of } \mathcal {D} ^{\prime}( \mathbf{R}) and assume that for the sequence \left\{c_j\right\}_{j \in \mathbf{Z} } of complex numbers there exist a positive constant A and a natural number k such that

\left|c_j\right| \leq A \cdot j^k \quad(j \in \mathbf{Z} ) .      (12.23)

a) Prove that the sequence of functions

f_m(x)=\overset{m}{\underset{j=-m}{\sum}} c_j e_j(x) \quad(m \in N )

converges in \mathcal {D} ^{\prime}( \mathbf{R}) \text { as } m \rightarrow \infty to the distribution

f(x)=\underset{j∈\mathbf{Z}}{\sum} c_j e_j(x)        (12.24)

b) Prove that for α ∈ N and f from (12.24) it holds

D^\alpha f(x)=\underset{j∈\mathbf{Z}}{\sum}(2 j \pi \imath)^\alpha c_j e_j(x)        (12.25)

where the convergence in (12.25) is in the sense of \mathcal {D} ^{\prime}( \mathbf{R}).

c) Find the sum of (12.24) in \mathcal {D} ^{\prime}( \mathbf{R}), \text { if } c_j=1 \text { for all } j \in \mathbf{Z}.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

a) Let us us start from the sequence of functions \left\{f_{m, k+2}(x)\right\}_{m \in \mathbf{N} } (k from (12.23)), where

f_{m, k+2}(x)=\overset{m}{\underset{0≠j=-m}{\sum}} \frac{c_j}{(2 j \pi \imath)^{k+2}} e_j(x) \quad(m \in \mathbf{N} ) .

In view of (12.23), this sequence uniformly converges on every compact set K ⊂ R, hence its limit is a continuous function on R; let us denote it by F_{k+2}.
The distributional derivative of order k + 2 of the function F_{k+2} is

D^{k+2} F_{k+2}(x)=\lim _{m \rightarrow \infty} f_{m, k+2}(x)=f(x)-a_0

In other words, the distribution f, given by (12.24), is the limit of the sequence \left\{a_0+f_{m, k+2}(x)\right\}_{m \in N } \text { in }\mathcal {D} ^{\prime}( \mathbf{R})

b) Since for \alpha \in \mathbf{N} \text { and } m \in \mathbf{Z} _{+} it holds

D^\alpha f_m(x)=\overset{m}{\underset{j=-m}{\sum}}(2 j \pi \imath)^\alpha e_j(x)

part a) implies that the sequence offunctions \left\{D^\alpha f_m\right\}_{m \in N } \text { converges in } \mathcal {D} ^{\prime}( \mathbf{R}) to the distribution D^\alpha f and thus (12.25) holds.

c) From part a) it follows that the sequence \left\{\overset{m}{\underset{j=-m}{\sum}} e_j(x)\right\}_{m \in \mathbf{N} } converges in \mathcal {D} ^{\prime}( \mathbf{R}) to a distribution which we denote by g. Then we have in the sense of \mathcal {D} ^{\prime}( \mathbf{R}):

\left(1-e_1(x)\right) g(x)=\lim _{m \rightarrow \infty}\left(1-e_1(x)\right) \overset{m}{\underset{j=-m}{\sum}} e_j(x)=\lim _{m \rightarrow \infty}\left(e_{-m}(x)-e_{m+1}(x)\right)        (12.26)

Let us prove next that the last limit is equal to 0 in \mathcal {D} ^{\prime}( \mathbf{R}) . To that end, let us analyze the difference e_{-m}(x)-e_{m+1}(x) :

\begin{gathered}\left\langle\left(e_{-m}(x)-e_{m+1}(x)\right), \varphi(x)\right\rangle=\int_{ \mathbf{R} } e^{-2 \pi m \imath x} \varphi(x) d x-\int_{ \mathbf{R} } e^{2 \pi(m+1) \imath x} \varphi(x) d x \\=\frac{-\underline{i}}{2 \pi m \imath} \int_{ \mathbf{R} } e^{-2 \pi m \imath x} \varphi^{\prime}(x) d x+\frac{1}{2 \pi(m+1) \imath} \int_{ \mathbf{R} } e^{2 \pi(m+1) \imath x} \varphi^{\prime}(x) d x\end{gathered}

Thus we have

\left|\left\langle e_{-m}(x)-e_{m+1}(x), \varphi(x)\right\rangle\right| \leq \frac{1}{2 \pi m} \int_{ \mathbf{R} }\left|\varphi^{\prime}(x)\right| d x+\frac{1}{2 \pi(m+1)} \int_{ \mathbf{R} }\left|\varphi^{\prime}(x)\right| d x \leq \frac{C}{m}

for some constant C=C(\varphi) . \text { The last right-hand side tends to } 0 \text { as } m \rightarrow \infty, which implies that the right-hand side of (12.26) tends to zero in \mathcal {D} ^{\prime}( \mathbf{R}) as m →∞. Thus we obtained that the sought after distribution g is the solution of the equation

\left(1-e^{2 \pi \imath x}\right) \cdot g(x)=0        (12.27)

For |x|<m \text {, the solutions of the equation } e^{-2 \pi \imath x}=1 are the integers j such that |j| < m. Example 12.7 tells us that the solutions of (12.27) in \mathcal {D} ^{\prime}(-m, m) are exactly the solutions of the following equation

\left(\overset{m-1}{\underset{j=-m+1}{\prod}}(x-j)\right) \cdot g(x)=0        (12.28)

The same example gives us the solution of (12.28) in \mathcal {D} ^{\prime}(-m, m)

g(x)=\overset{m-1}{\underset{j=-m+1}{\sum}} A_j \delta_j(x)

while in \mathcal {D} ^{\prime}( \mathbf{R}) the solution of (12.27) is

g(x)=\underset{j∈\mathbf{Z}}{\sum} A_j \delta_j(x) .

We next show that all constants A_i, j \in \mathbf{Z},are equal to a single constant C.
To that end, note that for a test function \varphi_m such that

\operatorname{supp} \varphi_m \subset(m-2 / 3, m+2 / 3) \text { and } \varphi(x)=1

on the interval (m – 1/3, m + 1/3), it holds

\left\langle g, \varphi_m\right\rangle=\left\langle\underset{j∈\mathbf{Z}}{\sum} A_j \delta_j \varphi_m\right\rangle=\left\langle A_m \delta_m, \varphi_m\right\rangle=A_m        (12.29)

From the other hand, g is 1-periodic, i.e.,

\langle g, \varphi\rangle=\langle g(x), \varphi(x-1)\rangle

for every test function φ But then it follows from (12.29):

A_m=A_{m-1}=C \quad \text { for every } \quad m \in \mathbf{Z} \text {. }

So we get

g(x)=C \cdot \underset{j∈\mathbf{Z}}{\sum} \delta_j(x)

Related Answered Questions

Question: 12.14

Verified Answer:

a) Let \varphi \in \mathcal {D} ( \mathbf{R...
Question: 12.10

Verified Answer:

a) Let y \in \mathcal {D} ^{\prime}( \mathb...