Holooly Plus Logo

Question 12.20: Let E(x) =1/σn(2-n)|x|^n-2 for n ≥ 3, n where σn = 2π^n / 2/......

Let

E(x)=\frac{1}{\sigma_n(2-n)|x|^{n-2}} \text { for } n \geq 3

where \sigma_n=2 \pi^{n / 2} / \Gamma(n / 2).

Prove that

a) E is a locally integrable function;
b) E is the fundamental solution for the Laplace operator Δ.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

a) There exist M > 0 and a < n such that

|E(x)| \leq \frac{M}{|x|^a},

where the integral \int_{B(0, s)} \frac{d x}{x^a} converges f or arbitrary s > 0, since

\begin{aligned}\int_{B(0, s)} \frac{d x}{x^a} & =\int_0^s\left(\int_{\partial B(0, r)} \frac{d S_x}{x^a}\right) d r=\int_0^s\left(\int_{\partial B(0, r)} d S\right) d r \\& =\sigma_n \int_0^s r^{n-1-a} d r=\sigma_n \frac{s^{n-a}}{n-a} .\end{aligned}

b) By definition of the distributional derivative and Lebesgue convergence theorem we have for every \varphi \in \mathcal {D} \text { and } 0<\varepsilon<s

<\Delta E, \varphi>=<E, \Delta \varphi>=\int_{ \mathbf{R} ^n} E \Delta \varphi d x=\lim _{\varepsilon \rightarrow 0+} \int_{\varepsilon \leq|x| \leq s} E(x) \Delta \varepsilon(x) d x

and supp \varphi \subset B(0, s). Applying the classical symmetric Green formula on the region B(0, s) \backslash \overline{B(0, \varepsilon)}, \text { since } E \in C^{\infty}(\{x|| x \mid \geq \varepsilon\}), we obtain

\begin{aligned}\int_{\varepsilon \leq|x| \leq s}(E \Delta \varphi-\varphi \Delta E) d x & =\int_{\partial B(0, s) \cup \partial B(0, \varepsilon)}\left(E \frac{\partial \varphi}{\partial n }-\varphi \frac{\partial E}{\partial n }\right) d S \\& =\int_{\partial B(0, \varepsilon)}\left(E \frac{\partial \varphi}{\partial n }-\varphi \frac{\partial E}{\partial n }\right) d S .\end{aligned}

Therefore we have

\int_{\varepsilon \leq|x| \leq s} E \Delta \varphi d x=\int_{\varepsilon \leq|x| \leq s} \varphi \Delta E d x+\int_{\partial B(0, \varepsilon)}\left(E \frac{\partial \varphi}{\partial n }-\varphi \frac{\partial E}{\partial n }\right) d S         (12.38)

since \varphi=0 \text { on } \partial B(0, s) \text {. Let now }|x|=r. Then

\frac{\partial}{\partial x_i}\left(\frac{1}{r^{n-2}}\right)=(2-n) x_i r^{-n}

and

\frac{\partial^2}{\partial x_i{ }^2}\left(\frac{1}{r^{n-2}}\right)=(2-n) r^{-n}+(2-n) x_i\left(-\frac{n}{2}\right) 2 x_i r^{-n-2} .

Therefore we have

\Delta\left((2-n) \sigma_n E\right)=(2-n) n r^{-n}-n(2-n)\left(\overset{n}{\underset{i=1}{\sum}} x_i^2\right) r^{-n-2}=0

Then we obtain by (12.38)

<\Delta E, \varphi>=\lim _{\varepsilon \rightarrow 0+} \int_{\partial B(0, \varepsilon)}\left(E \frac{\partial \varphi}{\partial r}-\varphi \frac{\partial E}{\partial r}\right) d S_{\varepsilon} .

We shall prove that the last limit is equal \varphi(0), \text { i.e., }\langle\delta, \varphi> . Using the polar coordinates we have that d S_{\varepsilon}=\varepsilon^{n-1} d S_1 and so

\begin{gathered}\int_{\partial B(0, \varepsilon)}\left(E \frac{\partial \varphi}{\partial r}-\varphi \frac{\partial E}{\partial r}\right) d S_{\varepsilon}=\int_{r=\varepsilon} \varepsilon^{2-n} \frac{\partial \varphi}{\partial r} \varepsilon^{n-1} d S_1 \\-\int_{r=\varepsilon} \varphi\left(\varepsilon, \theta_1, \ldots, \theta_{n-1}\right)(2-n) \varepsilon^{1-n} \cdot \frac{1}{\varepsilon^{n-1}} d S_1 \\=\int_{r=\varepsilon} \varepsilon \frac{\partial \varphi}{\partial r} d S_1+(n-2) \int_{r=\varepsilon} \varphi\left(\varepsilon, \theta_1, \ldots, \theta_{n-1}\right) d S_1 .\qquad(11.39)\end{gathered}

Since

\left|\frac{\partial \varphi}{\partial r}\right| \leq \overset{n}{\underset{i=1}{\sum}} \sup \left|\frac{\partial \varphi}{\partial x_i}\right|<M

we obtain  \int_{r=\varepsilon} \varepsilon \frac{\partial \varphi}{\partial r} d S_1 \rightarrow 0 \text { as } \varepsilon \rightarrow 0+ We have by Lebesgue theorem on convergence

\int_{r=\varepsilon} \varphi\left(\varepsilon, \theta_1, \ldots, \theta_{n-1}\right) d S_1 \rightarrow \sigma_n \varphi(0)

as \varepsilon \rightarrow 0+\text {. Therefore letting } \varepsilon \rightarrow 0+ in (12.39) we obtain

<\Delta E, \varphi>=\lim _{\varepsilon \rightarrow 0+} \int_{\partial B(0, \varepsilon)}\left(E \frac{\partial \varphi}{\partial r}-\varphi \frac{\partial E}{\partial r}\right) d S_{\varepsilon}=\varphi(0)=<\delta, \varphi>.

Related Answered Questions

Question: 12.14

Verified Answer:

a) Let \varphi \in \mathcal {D} ( \mathbf{R...
Question: 12.10

Verified Answer:

a) Let y \in \mathcal {D} ^{\prime}( \mathb...