Holooly Plus Logo

Question 15.5.6: If α and β be two distinct real numbers such that (α-β) ≠ 2n......

If \alpha and \beta be two distinct real numbers such that (\alpha-\beta) \neq 2 n \pi for any intetger n , satisfying the equation a \cos \theta+b \sin \theta=c then prove that

(i) \cos (\alpha+\beta)=\frac{a^{2}-b^{2}}{a^{2}+b^{2}}\quad (ii) \sin (\alpha+\beta)=\frac{2 a b}{a^{2}+b^{2}} .

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Since \alpha and \beta satisfy the equation a \cos \theta+b \sin \theta=c , we have

\begin{array}{l}a \cos \alpha+b \sin \alpha=c, \qquad \qquad …(i)\\a \cos \beta+b \sin \beta=c .\qquad \qquad …(ii)\end{array}

Subtracting (ii) from (i), we get

\begin{array}{l}a(\cos \alpha-\cos \beta)+b(\sin \alpha-\sin \beta)=0 \\  \\\Rightarrow-2 a \sin \left(\frac{\alpha+\beta}{2}\right) \sin \left(\frac{\alpha-\beta}{2}\right)+2 b \cos \left(\frac{\alpha+\beta}{2}\right) \sin \left(\frac{\alpha-\beta}{2}\right)=0 \\  \\\Rightarrow-2 \sin \left(\frac{\alpha-\beta}{2}\right)\left[a \sin \left(\frac{\alpha+\beta}{2}\right)-b \cos \left(\frac{\alpha+\beta}{2}\right)\right]=0 \\  \\\Rightarrow a \sin \left(\frac{\alpha+\beta}{2}\right)-b \cos \left(\frac{\alpha+\beta}{2}\right)=0\\  \\{\left[\begin{array}{l}\because(\alpha-\beta) \neq 2 n \pi \Rightarrow\left(\frac{\alpha-\beta}{2}\right) \neq n \pi \\  \\\therefore \sin \left(\frac{\alpha-\beta}{2}\right) \neq \sin n \pi \neq 0\end{array}\right]} \\  \\\Rightarrow \tan \left(\frac{\alpha+\beta}{2}\right)=\frac{b}{a} .\qquad \qquad …(iii) \\  \\\text { (i) } \cos (\alpha+\beta)=\frac{1-\tan ^{2}\left(\frac{\alpha+\beta}{2}\right)}{1+\tan ^{2}\left(\frac{\alpha+\beta}{2}\right)} \quad\left[\because \cos x=\frac{1-\tan ^{2}\left(\frac{x}{2}\right)}{1+\tan ^{2}\left(\frac{x}{2}\right)}\right] \\  \\=\frac{\left(1-\frac{b^{2}}{a^{2}}\right)}{\left(1+\frac{b^{2}}{a^{2}}\right)}=\frac{a^{2}-b^{2}}{a^{2}+b^{2}} \quad[\text { using (iii)]. } \\  \\\text{  (ii)  }\sin (\alpha+\beta)=\frac{2 \tan \left(\frac{\alpha+\beta}{2}\right)}{1+\tan ^{2}\left(\frac{\alpha+\beta}{2}\right)}\left[\because \sin x=\frac{2 \tan \left(\frac{x}{2}\right)}{1+\tan ^{2}\left(\frac{x}{2}\right)}\right] \\  \\=\frac{2\left(\frac{b}{a}\right)}{\left(1+\frac{b^{2}}{a^{2}}\right)}=\frac{2 a b}{a^{2}+b^{2}} \quad[\text { using (iii)]. } \end{array}

Related Answered Questions

Question: 15.4.19

Verified Answer:

We have \begin{aligned}& \cot 3 x=\cot ...
Question: 15.5.5

Verified Answer:

We have \begin{array}{l} \text { LHS }=\fra...
Question: 15.5.4

Verified Answer:

We have \begin{aligned}\text { LHS } &...
Question: 15.5.3

Verified Answer:

Since x lies in Quadrant III, we ...
Question: 15.5.2

Verified Answer:

Since x lies in Quadrant III, we ...
Question: 15.5.1

Verified Answer:

Since x lies in Quadrant II, we h...
Question: 15.2.26

Verified Answer:

(i) \sin ^{2} \theta=\frac{(1-\cos 2 \thet...
Question: 15.4.25

Verified Answer:

We have \begin{array}{l} \text { LHS }=\sin...
Question: 15.4.24

Verified Answer:

We have \begin{aligned}\text { LHS } &...
Question: 15.4.23

Verified Answer:

We have \begin{aligned}\text { LHS } & ...