Question 3.17: Lubricated Shaft Rotation with Heat Generation Consider “cyl......

Lubricated Shaft Rotation with Heat Generation
Consider “cylindrical” Couette flow where, somewhat similar to Example 3.15, the rotating shaft \rm(R_i , ω_i ) is adiabatic and the stationary housing \rm(R_0, T_0 ) is isothermal. In light of viscous dissipation, find T(r) as well as \rm T_{max} at \rm r =R_i  and \rm\hat Q_{wall}(r=R_0).

Approach Assumptions Sketch
• Reduced Θ- momentum equation • Steady laminar 1-D axisymmetri cal flow
• Postulate \rm v_θ=v_θ(r) only • No gravity or end effects
• Constant properties
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Based on the postulate and assumptions, the Continuity Equation is satisfied and the Θ-momentum equation in cylindrical coordinates reduces to (see Equation Sheet in App. A):

{\frac{\mathrm{d}}{\mathrm{d}\mathrm{r}}}\left\lgroup{\frac{1}{\mathrm{r}}}{\frac{\mathrm{d}}{\mathrm{d}\mathrm{r}}}\left(\mathrm{r}\,\mathrm{v}_{\theta}\right)\right\rgroup =0                                  (E.3.17.1a)

subject to

\rm v_\theta (r=R_i)=(\omega R)_i~~\text{and}~~v_\theta (r=R_0)=0                      (E.3.7.1b,c)

Double integration and invoking the B.C.s yields:

\rm \mathrm{v_{\theta }(r)=\frac{\omega_{i}^{}\,{R_{i}}_{}({ R_{0}}^{{}}/{R_{i}}_{}{{}})^{2}}{\left\lgroup\frac{{ R_{0}}}{{ R_{i}}}\right\rgroup^{2}-1}\left[\frac{ R_{i}}{\mathrm{r}}-\frac{\mathrm{r}}{\mathrm{R}_{\mathrm{i}}{}}\right]}                                    (E.3.17.2)

The heat transfer equation (see Equation Sheet in App. A) reduces to:

0=\frac{\mathrm{k}}{\mathrm{r}}\,\frac{\mathrm{d}}{\mathrm{d}\mathrm{r}}\!\left\lgroup\mathrm{r}\,\frac{\mathrm{d}\mathrm{T}}{\mathrm{d}\mathrm{r}}\right\rgroup\!-\!\mu\Phi                                (E.3.17.3a)

where

\rm\Phi=\left\lgroup{\frac{\mathrm{d}\mathrm{v_{\theta}}}{\mathrm{d}\mathrm{r}}}-{\frac{\mathrm{v_{\theta}}}{\mathrm{r}}}\right\rgroup^{2}                              (E.3.17.3b)

and as stated:

\rm\left.{\frac{\mathrm{d}T\ }{\mathrm{d}\mathrm{r}}}\right|_{\mathrm{r}=\mathrm{R_i}}=0;~\mathrm{T}(\mathrm{r}=\mathrm{R}_{0})=\mathrm{T}_{0}{}                      (E.3.17.3c,d)

With \rm v_\theta (r) given, Eq. (E.3.17.3b) can be determined and hence Eq. (E.3.17.3a) can be integrated subject to Eq. (E.3.17.3c, d). Thus,

\rm \mathrm{T(r)=T_{0}+{\frac{\mathrm{\mu}}{4k}}\left[{\frac{2\omega _{\mathrm{i}}\mathrm{R_{i}}}{\mathrm{{1-\left\lgroup\frac{R_i}{R_0}\right\rgroup^2 }}}}\right]^{2}}\left[\left\lgroup{\frac{\mathrm{R_{i}}}{\mathrm{R_{0}}}}\right\rgroup ^{2}-\left\lgroup{\frac{\mathrm{R_{i}}}{\mathrm{r}}}\right\rgroup ^{2}+2\mathrm{ln}\left\lgroup{\frac{\mathrm{R_{0}}}{r} }\right\rgroup \right]       (E.3.l7.4)

Now, either by inspection of (E.3.17.4) or setting dT/dr to zero, \rm T_{max} occurs at \rm r = R_i. In dimensionless form,

\rm\frac{T_{\mathrm{max}}-T_{0}}{\frac{\mu}{4k}\left[\frac{2\omega _iR_i}{1-\left\lgroup\frac{R_i}{R_0} \right\rgroup^2 } \right]^2 }=\Bigg[\left\lgroup \frac{\mathrm{R}_{\mathrm{i}}}{\mathrm{R}_{0}}\right\rgroup ^{2}-1+2\mathrm{ln}\left\lgroup \frac{\mathrm{R}_{\mathrm{o}}}{\mathrm{R}_{\mathrm{i}}}\right\rgroup \Bigg]                        (E.3.17.5)

The wall heat transfer rate per unit length is:

\rm \hat{{ Q}}_{\mathrm{~wall}}=(2\pi{ R_{0}})~\mathrm{q}({r}={ R_{0}});

where \rm\mathrm{{q}}(\mathrm{r}=\mathrm{R}_{0})=-\mathrm{k}\left.{\frac{\mathrm{{d}}T}{\mathrm{{d}}\mathrm{r}}}\right|_{\mathrm{{r=R_0}}}\,                          (E.3.17.6a, b)

Hence,

\rm \hat{\mathrm{Q}}_{\mathrm{w}}=\frac{4\pi\mathrm{\mu}(\mathrm{\omega }\mathrm{R})_{\mathrm{i}}^{2}}{1-\left\lgroup\frac{\mathrm{R}_{\mathrm{i}}}{\mathrm{R}_{0}}\right\rgroup^{2}}                            (E.3.17.6c)

Graphs:

Comments:
• For small gaps, i.e., \rm R_o − R_i << 1, the velocity profiles are almost linear, despite the hyperbolic term in Eq. (E.3.17.2). Clearly, with ΔR << 1, \rm v_θ (r) is “linearized”.

• This is not the case for T(r) due to the strong viscous (heating effect (see Graph b).

• As expected, \rm\hat Q_w(\omega _i) decreases with a strong nonlinear influence of the gap size (see Graph c)

example 3.17 1
example 3.17 2
example 3.17 3

Related Answered Questions