Question 3.5: Parallel Flows in Cylindrical Tubes Case A: Consider flow th......

Parallel Flows in Cylindrical Tubes

Case A: Consider flow through an annulus with tube radius R and inner concentric cylinder aR, where a < 1, creating a ring-like crosssectional flow area.

Postulates: v=(0,0,vz); ppzΔpl=¢; vz=vz(r)\rm \vec{\bf v}=(0,0,v_z);~\nabla p\Rightarrow \frac{\partial p}{\partial z} \approx -\frac{\Delta p}{l} =¢;~v_z=v_z(r) only

t=0\frac{\partial}{\partial t} =0 < steady state >;        ϕ=0\frac{\partial}{\partial \phi} =0 < axisymmetric >

Continuity Equation: 0+0+vzz=0\rm0+0+\frac{\partial v_z}{\partial z} =0, i.e., fully-developed flow

Boundary Conditions: vz(r=aR)=0\rm v_z(r=aR)=0 and vz(r=R)=0\rm v_z(r=R)=0

Case B: Consider Case A but now with pz0\rm\frac{\partial p}{\partial z} \equiv 0 and the inner cylinder rotating at angular velocity ω0=¢\omega _0=¢ <cylindrical Couette flow>; in general, the outer cylinder could rotate as well, say with ω1=¢\omega _1=¢.

Concept Assumptions Sketch
• Reduced N– S equations in cylindrical coordinates • Steady laminar axisymmetric flow
• Constant ∂p/∂z and constant ρ and μ
Concept Assumptions Sketch
• Reduced N-S equations in cylindrical coordinates • Steady laminar axisymmetric flow
• Postulates: v=(0,vθ,0) pθ=pz=0\rm \vec{\bf v}=(0,v_\theta ,0)~\frac{\partial p}{\partial \theta } =\frac{\partial p}{\partial z} =0 • Long cylinders, i.e., no end effects
• Small ω’s to avoid Taylor vortices
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Case A: Of interest is the z-momentum equation, i.e., with the stated postulates (see App. A, Equation Sheet):

0=pz=μ[1rrrvzr]\rm0=-\frac{\partial p}{\partial z} =\mu\left[\frac{1}{r}\frac{\partial}{\partial r}\left\lgroup r\frac{\partial v_z}{\partial r} \right\rgroup \right]                       (E.3.5.1a)

Thus, with P1μΔpl\rm P\equiv \frac{1}\mu \left\lgroup\frac{-\Delta p}{l} \right\rgroup

ddrrdvzdr=Pr\rm\frac{d}{dr} \left\lgroup r\frac{dv_z}{dr} \right\rgroup =P\cdot r                          (E3.5.1b)

and hence after double integration,

vz(r)=P4r2+C1lnr+C2\rm v_z(r)=\frac{P}{4} r^2+C_1\ln r+C_2                      (E.3.5.2)

Invoking the BCs,

0=P4(aR)2+C1ln(aR)+C2\rm0=\frac{P}{4} (aR)^2+C_1\ln(aR)+C_2

and

0=P4R2+C1lnR+C2\rm0=\frac{P}{4} R^2+C_1\ln R+C_2

yields

vz(r)=PR24[1rR21a2ln(1/a)lnRr]\rm v_z(r)=\frac{PR^2}{4} \left[1-\left\lgroup\frac{r}{R} \right\rgroup^2-\frac{1-a^2}{\ln(1/a)}\ln\left\lgroup\frac{R}{r} \right\rgroup \right]                           (E.3.5.3)

and

τrz=μdvzdr:=μP2R[rR1a22ln(1/a)Rr]\rm\tau_{rz}=\mu\frac{dv_z}{dr} :=\frac{\mu \,P}{2} R\left[\left\lgroup\frac{r}{R} \right\rgroup-\frac{1-a^2}{2\ln(1/a)}\left\lgroup\frac{R}{r} \right\rgroup \right]                                 (E.3.5.4a, b)

Notes:
• For Poiseuille flow, i.e., no inner cylinder, the solution is (see Example 3.4):

vz(r)=R24μΔpl[1rR2]\rm v_z(r)=\frac{R^2}{4\mu} \left\lgroup\frac{\Delta p}{l} \right\rgroup \left[1-\left\lgroup\frac{r}{R} \right\rgroup^2 \right]                     (E.3.5.5)

This solution is not recovered when letting a → 0 because of the prevailing importance of the ln-term near the inner wall.
• The maximum annular velocity is not in the middle of the gap aR ≤ r ≤ R, but closer to the inner cylinder wall, where the velocity gradient is zero and hence

τrzr=bR=0\left.\rm\tau_{rz}\right|_{\rm r=bR}=0

This equation can be solved for b so that vz(r=bR)=vmax\rm v_z(r=bR)=v_{max}.

• The average velocity is vav=vz(r)dA\rm v_{av}=\int v_z(r)dA, where dA = 2πrdr 〈cross-sectional ring of thickness dr〉 , so that

vav=R28μΔpl[1a41a21a2ln(1/a)]\rm v_{av}=\frac{R^2 }{8\mu} \left\lgroup\frac{\Delta p}{l} \right\rgroup \left[\frac{1-a^4}{1-a^2}-\frac{1-a^2}{\ln(1/a)} \right]                         (E.3.5.6)

and hence

Q=vav[πR2(1a2)]:=πR48μΔpl[(1a4)(1a2)2ln(1/a)]\rm Q=v_{av}[\pi R^2(1-a^2)]:=\frac{\pi R^4}{8\mu} \left\lgroup\frac{\Delta p}{l} \right\rgroup \left[(1-a^4)-\frac{(1-a^2)^2}{\ln(1/a)} \right]           (E.3.5.7)

• The net force exerted by the fluid on the solid surfaces comes from two wall shear stress contributions:

Fs=(τrzr=aR)(2πaRl)+(τrzr=R)(2πRl)\rm F_s=\left(-\tau_{rz}|_{r=aR}\right) (2\pi aRl)+\left(\tau_{rz}|_{r=R}\right) (2\pi Rl)                (E.3.5.8a)

  Fs=πR2Δp(1a2)\therefore ~~\rm F_s=\pi R^2\Delta p(1-a^2)                      (E.3.5.8b)

Case B: With vr=vz=0;  t=θ=0\rm v_r=v_z=0;\;\frac{\partial}{\partial t} =\frac{\partial}{\partial \theta } =0; and vθ=vθ(r)\rm v_\theta =v_\theta (r) only (see Continuity and BCs) we reduce the θ-component of the \ Navier– Sokes equation (see Equation Sheet) to:

0=0+μ[r1rr(rvθ)]\rm 0=0+\mu\left[\frac{\partial}{\partial r} \left\lgroup\frac{1}{r}\frac{\partial}{\partial r}(rv_\theta ) \right\rgroup \right]                       (E.3.5.9)

subject to
vθ(r=aR)=ω0(aR) and vθ(r=R)=ω1R\rm v_ θ(r= aR) =ω_0 (aR)~ and~ v_θ (r =R) = ω_1R.

Again, as in simple Couette flow after start-up, the moving-wall induced frictional effect propagates radially and the forced cylinder rotations balanced by the drag resistance generate an equilibrium velocity profile. Double integration yields:

vθ(r)=C1r+C2r\rm v_\theta (r)=C_1r+\frac{C_2}{r}                 (E.3.5.10a)

where

C1=ω1R2ω0(aR)2R2(aR)2  and  C2=a2R4(ω0ω1)R2(aR)2\rm C_1=\frac{\omega _1R^2-\omega _0(aR)^2}{R^2-(aR)^2} ~~and~~C_2=\frac{a^2R^4(\omega _0-\omega _1)}{R^2-(aR)^2}               (E.3.5.10b, c)

Notes:
• The r-momentum equation reduces to:

vθ2r=1ρpr\rm -\frac{v_\theta ^2}{r} =-\frac{1}{\rho} \frac{\partial p}{\partial r}                       (E.3.5.11)

Thus, with the solution for vθ(r)\rm v_θ (r)  known, Eq. (E.3.5.11) can be used to find ∂p / ∂r and ultimately the load-bearing capacity.

• Applying this solution as a first-order approximation to a journal bearing where the outer tube (or sleeve) is fixed, i.e., ω10ω_1 ≡0, we have in dimensionless form:

vθ(r)ω0R=a21a2RrrR\rm\frac{v_\theta (r)}{\omega _0R}=\frac{a^2}{1-a^2} \left\lgroup\frac{R}{r}-\frac{r}{R} \right\rgroup                   (E.3.5.12)

• The torque necessary to rotate the inner cylinder (or shaft) of length l is

T=(aR)dF:=(aR)0lτrθr=aRdA\rm T=\int(aR)dF:=(aR)\int\limits_0^l\tau_{r\theta} |_{r=aR}dA                  (E.3.5.13)

where dA = π(aR)dz and τrθr=aR=μ[rddrvθr]r=aR.\rm\left.\tau_{r\theta} \right|_{r=aR}=\mu\left[r\frac{d}{dr}\left\lgroup\frac{v_\theta }{r} \right\rgroup \right] _{r=aR}.

Thus with:

τsurfaceτrθr=aR=2μωoR2R2(aR)2\rm\tau_{surface}\equiv \tau_{r\theta }|_{r=aR}=2\mu\frac{\omega _oR^2}{R^2-(aR)^2}                   (E.3.5.14)

T=τsurfAsurf(aR):=4πμ(aR)2lω01a2\rm T=\tau_{surf}A_{surf}(aR):=4\pi\mu(aR)^2l\frac{\omega _0}{1-a^2}                   (E.3.5.15)

Graph:

  T/[4πμR2lω0]\rm    T/[4πμR^2lω_0]

Comments:
• An electric motor may provide the necessary power, P=Tω0\rm P = Tω_0 , which turns into thermal energy which has to be removed to avoid overheating.
• The Graph depicts the nonlinear dependence of T(a) for a given system. As the gap between rotor (or shaft) and stator widens, the wall stress increases (see Eq. (E.3.5.14)) as well as the surface area and hence the necessary torque.

التقاط

Related Answered Questions