Holooly Plus Logo

Question 15.9: Series Capacitors Three capacitors with values of 10 µF, 30 ......

Series Capacitors

Three capacitors with values of 10 µF, 30 µF, and 15 µF are connected in series to a 480-V, 60-Hz line (Fig. 15-44). Find the following circuit values.

X_{C 1} — capacitive reactance of the first capacitor

X_{C 2} — capacitive reactance of the second capacitor

X_{C3} — capacitive reactance of the third capacitor

X_{CT} — total capacitive reactance for the circuit

C_{T} — total capacitance for the circuit

I_{T} — total circuit current

E_{C1} — voltage drop across the first capacitor

VARs_{C1} — reactive power of the first capacitor

E_{C2} — voltage drop across the second capacitor

VARs_{C2} — reactive power of the second capacitor

E_{C3} — voltage drop across the third capacitor

VARS _{ C 3} — reactive power of the third capacitor

\text { VARs }_{ CT } — total reactive power for the circuit

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Since the frequency and the capacitance of each capacitor are known, the capacitive reactance for each capacitor can be found using the formula

X_C=\frac{1}{2 \pi F C}

Recall that the value for C in the formula is in farads, and the capacitors in this problem are rated in microfarads.

\begin{aligned}& X _{ C 1}=\frac{1}{2 \pi FC } \\ \\& X _{ C 1}=\frac{1}{377 \times 0.000010}\\ \\& X _{ C 1}=265.25~ \Omega\\  \\& X _{ C 2}=\frac{1}{2 \pi FC }\\  \\& X _{ C 2}=\frac{1}{377 \times 0.000030}\\  \\& X _{ C2}=88.417~ \Omega\\  \\& X _{ C 3}=\frac{1}{2 \pi FC }\end{aligned}

                                             \begin{aligned}& X_{C 3}=\frac{1}{377 ~\times~ 0.000015} \\ \\& X_{C 3}=176.83~ \Omega\end{aligned}

Since there is no phase angle shift between any of the three capacitive reactances, the total capacitive reactance will be the sum of the three reactances (Fig. 15-45).

X_{C T}=X_{C 1}+X_{C 2}+X_{C 3}

                                         X_{C T}=265.25+88.417+176.83

                                        X_{C T}=530.497 ~\Omega

The total capacitance of a series circuit can be computed in a manner similar to that used for computing parallel resistance. Refer to the Pure Capacitive Circuits Formula section of the appendix. Total capacitance in this circuit will be computed using the formula

C_T=\frac{1}{\frac{1}{C_1}~+~\frac{1}{C_2}~+~\frac{1}{C_3}}

C_T=\frac{1}{\frac{1}{10}~+~\frac{1}{30}~+~\frac{1}{15}}

                                                  C _{ T }=\frac{1}{0.2}

                                                  C_T=5~ \mu F

The total current can be found by substituting the total capacitive reactance for R in an Ohm’s law formula.

I _{ T }=\frac{ E _{ CT }}{ X _{ CT }}

  I_T=\frac{480}{530.497}

                                                        I _{ T }=0.905 ~A

Because the current is the same at any point in a series circuit, the voltage drop across each capacitor can now be computed using the capacitive reactance of each capacitor and the current flowing through it.

                                             E _{ C 1}= I _{ C 1} \times X _{ C 1}

E_{C 1}=0.905 \times 265.25

                                              E_{C 1}=240.051 ~V

\begin{aligned}& E _{ C 2}= I _{ C 2} \times X _{ C 2} \\& E _{ C 2}=0.905 \times 88.417 \\& E _{ C 2}=80.017~ V \\& E _{ C 3}= I _{ C 3} \times X _{ C 3} \\& E _{ C 3}=0.905 \times 176.83 \\& E _{ C 3}=160.031 ~V\end{aligned}

Now that the voltage drops of the capacitors are known, the reactive power of each capacitor can be found.

\begin{aligned}\operatorname{VARs}_{ C 1} & = E _{ C 1} \times I _{ C 1} \\\operatorname{VARs}_{ C 1} & =240.051 \times 0.905 \\\operatorname{VARs}_{ C 1} & =217.246 \\\operatorname{VARs}_{ C 2} & = E _{ C 2} \times I _{ C 2} \\\operatorname{VARs}_{ C 2} & =80.017 \times 0.905 \\\operatorname{VARs}_{ C 2} & =72.415 \\\operatorname{VARs}_{ C 3} & = E _{ C 3} \times I _{ C 3} \\\operatorname{VARs}_{ C 3} &=160.031 \times 0.905 \\\operatorname{VARs}_{ C 3} & =144.828\end{aligned}

Power, whether true, apparent, or reactive, will add in any type of circuit. The total reactive power in this circuit can be found by taking the sum of all the VARs for the capacitors or by using total values of voltage and current and Ohm’s law.

\begin{aligned}& \text { VARs }_{ CT }=\text {VARs }_{C 1}+\text { VARs }_{C 2}+\text { VARs }_{C 3} \\& \text { VARs }_{ CT }= 2 1 7 . 2 4 6 +72.415+144.828 \\& \text { VARs }_{ CT }= 4 3 4 . 4 8 9\end{aligned}

The circuit with all computed values is shown in Figure 15-46.

fig 15-44
fig 15-45
fig 15-46

Related Answered Questions

Question: 15.4

Verified Answer:

Change the above formula to solve for resistance. ...
Question: 15.6

Verified Answer:

The first step is to compute the capacitive reacta...
Question: 15.6

Verified Answer:

RMS = peak × 0.707 RMS = 354 V × 0.707 RMS = 250.2...
Question: 15.3

Verified Answer:

\sin \angle \theta=\frac{E_{\text {(INST) }...