Holooly Plus Logo

Question 24.9: Solve the two-dimensional loaded plate using the CST element......

Solve the two-dimensional loaded plate using the CST element. Determine the displacements and element stresses. Assume plane stress condition.

Capture
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Considering two CST elements, the finite element model and the elements, and the node numbers are shown in figure . The connectivity table is shown in Table 24.3

Co-ordinate of each nodes are (in mm)

Element no. 1 x_1=60, y_1=0, x_2=60, y_2=30, x_3=0, y_3=0

Element no. 2 x_1=0, y_1=30, x_2=y_2=0, x_3=60, y_3=30

D = material property matrix for plane stress condition

D=\left[\begin{array}{ccc}1 & v & 0 \\v & 1 & 0 \\0 & 0 & \frac{1-v}{2}\end{array}\right] \times \frac{E}{1-v^2}=\frac{70 \times 10^3}{1-0.33^2}\left[\begin{array}{ccc}1 & 0.33 & 0 \\0.33 & 1 & 0 \\0 & 0 & 0.335\end{array}\right]

D=78.555 \times 10^3\left[\begin{array}{ccc}1 & 0.33 & 0 \\0.33 & 1 & 0 \\0 & 0 & 0.335\end{array}\right]

\operatorname{det} J^{(1)}=x_{13} y_{23}-x_{23} y_{13}=60 \times 30-0=1800 \mathrm{~mm}^2

where x_{13}=x_1-x_3=60, y_{23}=y_2-y_3=30

\operatorname{det} J^{(2)}=1800 \mathrm{~mm}^2

Area A=\frac{1}{2}|\operatorname{det} J|=\frac{1}{2} \times 1800=900 \mathrm{~mm}^2

Element strain-displacement matrix is

B^{(1)}=\frac{1}{1800}\left[\begin{array}{cccccc} 30 & 0 & 0 & 0 & -30 & 0 \\0 & -60 & 0 & 60 & 0 & 0 \\-60 & 30 & 60 & 0 & 0 & -30 \end{array}\right]

B^{(2)}=\frac{1}{1800}\left[\begin{array}{cccccc} -30 & 0 & 0 & 0 & 30 & 0 \\0 & 60 & 0 & -60 & 0 & 0 \\60 & -30 & -60 & 0 & 0 & 30 \end{array}\right]

Now performing matrix multiplication, D B^e, we get

D B^{(1)}=10^3 \times\left[\begin{array}{cccccc} 1.309 & -0.864 & 0 & 0.864 & -1.309 & 0 \\0.432 & -2.618 & 0 & 2.618 & -0.432 & 0 \\-0.877 & 0.438 & 0.877 & 0 & 0 & -0.438 \end{array}\right]

D B^{(2)}=10^3 \times\left[\begin{array}{cccccc} -1.309 & 0.864 & 0 & -0.864 & 1.309 & 0 \\-0.432 & 2.618 & 0 & -2.618 & 0.432 & 0 \\+0.877 & -0.438 & -0.877 & 0 & 0 & 0.438 \end{array}\right]

The stiffness matrix is obtained from

k_e=t_e A_e B^T D B

k_e^{(1)}=10^5\left[\begin{array}{cccccc} 1 & 2 & 3 & 4 & 7 & 8 \\ 4.595 & -2.612 & -2.613 & 1.296 & -1.964 & 1.316 \\ -2.612 & 8.53 & 1.316 & -7.855 & 1.296 & -0.658 \\ -2.631 & 1.316 & 2.631 & 0 & 0 & -1.316 \\ 1.296 & -7.855 & 0 & 7.855 & -1.296 & 0 \\-1.964 & 1.296 & 0 & -1.296 & 1.964 & 0 \\1.316 & -0.658 & -1.316 & 0 & 0 & 0.658 \end{array}\right] ^{\leftarrow \text { Global dof }}

k_e^{(2)}=10^5\left[\begin{array}{cccccc} 5 & 6 & 7 & 8 & 3 & 4 \\4.595 & -2.612 & -2.631 & -1.964 & -1.964 & 1.316 \\& 8.513 & 1.316 & -7.855 & 1.296 & -0.658 \\& & 2.631 & 0 & 0 & -1.316 \\ \text { symmetric } & & & 7.855 & -1.296 & 0 \\& & & & 1.964 & 0 \\& & & & & 0.658 \end{array}\right] ^{\leftarrow \text { Global dof }}

The boundary conditions for the given problem are Q_5=Q_6=Q_7=Q_8=0 \text { and } Q_1, Q_2, Q_3 and Q_4 which need to be determined. Using the elimination approach, consider the stiffness matrix (assembled) associated with the degrees freedom Q_1, Q_2, Q_3 \text { and } Q_4. The force vector is

\{F\}=\left[\begin{array}{llllllll}0 & 0 & -10,000 & 0 & 0 & 0 & 0 & 0\end{array}\right]^T

The set of equations are

10^5 \times\left[\begin{array}{cccc}4.595 & -2.612 & -2.631 & 1.296 \\-2.612 & 8.513 & 1.316 & -7.855 \\-2.631 & 1.316 & 4.595 & 0 \\1.296 & -7.855 & 0 & 8.513\end{array}\right]\left\{\begin{array}{l}Q_1 \\Q_2 \\Q_3 \\Q_4\end{array}\right\}=\left\{\begin{array}{c}0 \\0 \\-10,000 \\0\end{array}\right\}

Solving for, Q_1, Q_2, Q_3 \text { and } Q_4 we get

Q_1=-0.015 \mathrm{~mm}, Q_2=0.021 \mathrm{~mm}

Q_3=-0.036 \mathrm{~mm}, Q_4=0.022 \mathrm{~mm}

For element 1, the element nodal displacement vector is

q^{(1)}=\left[\begin{array}{lll}-0.015, & 0.021,-0.036, & 0.022,0,0\end{array}\right]^T

Element stress \sigma^{(1)}=D B^{(1)} q

\sigma^{(1)}=\left[\begin{array}{lll}-18.774, & -3.864, & -9.21\end{array}\right]^T ~\mathrm{MPa}

\sigma^{(2)}=\left[\begin{array}{lll}-19.638, & -6.480, & -9.21\end{array}\right]^T ~\mathrm{MPa}

TABLE 24.3 Connectivity Table
Nodes
Element no. 1 2 3
1 1 2 4
2 3 4 2
Capture

Related Answered Questions

Question: 24.4

Verified Answer:

>> [V,D] = eig(A) Eigenvector is 1   -0.7071...
Question: 24.2

Verified Answer:

>> A= [1 3 10; 2 3 6; 4 6 8]; b=[10; 12; 20]...
Question: 24.7

Verified Answer:

Command: CYLINDER Current wireframe density: ISOLI...
Question: 24.6

Verified Answer:

Drawing a cone is the same as drawing a cylinder, ...
Question: 24.3

Verified Answer:

>> k=2e05*[0.4375 -0.4335 0; -0.4375 0.755 -...