Question 14.3: Calculate the open-circuit voltage of a silicon pn junction ...

Calculate the open-circuit voltage of a silicon pn junction solar cell.

Consider a silicon pn junction at T=300 \mathrm{~K} with the following parameters:

\begin{array}{ll}N_{a}=5 \times 10^{18} \mathrm{~cm}^{-3} & N_{d}=10^{16} \mathrm{~cm}^{-3} \\D_{n}=25 \mathrm{~cm}^{2} / \mathrm{s} & D_{p}=10 \mathrm{~cm}^{2} / \mathrm{s} \\\tau_{n 0}=5 \times 10^{-7} \mathrm{~s} & \tau_{p 0}=10^{-7} \mathrm{~s}\end{array}

Let the photocurrent density be J_{L}=I_{L} / A=15 \mathrm{~mA} / \mathrm{cm}^{2}.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We have that

J_{S}=\frac{I_{S}}{A}=\left(\frac{e D_{n} n_{p 0}}{L_{n}}+\frac{e D_{p} p_{n 0}}{L_{p}}\right)=e n_{i}^{2}\left(\frac{D_{n}}{L_{n} N_{a}}+\frac{D_{p}}{L_{p} N_{d}}\right)

We may calculate

L_{n}=\sqrt{D_{n} \tau_{n 0}}=\sqrt{(25)\left(5 \times 10^{-7}\right)}=35.4 \mu \mathrm{m}

and

L_{p}=\sqrt{D_{p} \tau_{p 0}}=\sqrt{(10)\left(10^{-7}\right)}=10.0 \mu \mathrm{m}

Then

\begin{aligned}J_{S} &=\left(1.6 \times 10^{-19}\right)\left(1.5 \times 10^{10}\right)^{2} \times\left[\frac{25}{\left(35.4 \times 10^{-4}\right)\left(5 \times 10^{18}\right)}+\frac{10}{\left(10 \times 10^{-4}\right)\left(10^{16}\right)}\right] \\&=3.6 \times 10^{-11} \mathrm{~A} / \mathrm{cm}^{2}\end{aligned}

Then from Equation (14.10), we can find

V_{o c}=V_{t} \ln \left(1+\frac{I_{L}}{I_{S}}\right)=V_{t} \ln \left(1+\frac{J_{L}}{J_{S}}\right)=(0.0259) \ln \left(1+\frac{15 \times 10^{-3}}{3.6 \times 10^{-11}}\right)=0.514 \mathrm{~V}

Comment

We may determine the built-in potential barrier of this junction to be V_{b i}=0.8556 \mathrm{~V}. Taking the ratio of the open-circuit voltage to the built-in potential barrier, we find that V_{o c} / V_{b i}=0.60. The open-circuit voltage will always be less than the built-in potential barrier.

Related Answered Questions