LHS =(1−sinx)cosx=(cos22x+sin22x−2sin2xcos2x)(cos22x−sin22x)[∵cosx=(cos22x−sin22x),cos22x+sin22x=1 and sinx=2sin2xcos2x]=(cos2x−sin2x)2(cos2x−sin2x)(cos2x+sin2x)=(cos2x−sin2x)(cos2x+sin2x)=(1−tan2x)(1+tan2x)=(1−tan4π⋅tan2x)(tan4π+tan2x)[ dividing num. and denom. by cos2x]=tan(4π+2x)= RHS.