Holooly Plus Logo

Question 14.5: (A) Two design methods are used in an axial turbine design. ......

(A) Two design methods are used in an axial turbine design. The swirl velocity at radius (r) in the first method is (C_u) and swirl velocity at the same radius (r) in the second method is (C^\prime_u). If the ratio between two swirl velocities is given by the ratio

\frac{C_u}{C^{\setminus }_u} =\lambda r^2

1. What will be the value of the constant (λ) and what may be those design methods?
2. Deduce a relation for the ratio between the axial velocities (C_{\text{a}}/C^\prime_{\text{a}}) at radius (r) for both design methods.
(b) A constant nozzle design method is used for the design of an axial turbine stage with a free vortex design at state (3); use the following data to obtain the variations from hub-to-tip in the angles and speeds:

\alpha_{\text{2m}}=58.8,\quad \beta_{\text{2m}}=20.5, \quad \alpha_{\text{3m}}=10, \quad \beta_{\text{3m}}=5.5 \\ \left(\frac{r_{\text{m}}}{r_{\text{r}}} \right) _2=1.16, \quad \left(\frac{r_{\text{m}}}{r_{\text{t}}} \right) _2=0.88 , \quad \left(\frac{r_{\text{m}}}{r_{\text{r}}} \right)_3 =1.22,\quad \left(\frac{r_{\text{m}}}{r_{\text{t}}} \right) _3=0.85 \\ \frac{U_{\text{m}}}{C_{\text{a2}}} =\frac{U_{\text{m}}}{C_{\text{a3}}} =1.25, \quad U_{\text{m}}=340 \text{ m/s}

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a)
(1) For general power with N = 1 at radius (r), the whirl velocity is C_{\text{U}} .

C_{\text{u}}=C_{\text{um}}\left(\frac{r}{r_{\text{m}}} \right) ^N

For N = 1

C_{\text{u}}=C_{\text{um}}\left(\frac{r}{r_{\text{m}}} \right)

(2) For free vortex design at radius (r), the whirl velocity is C^\prime_{\text{u}} , where

rC^\prime_{\text{u}}=\text{constant}\quad \text{or}\quad rC^\prime_{\text{u}}=r_{\text{m}}C_{\text{um}} \\ C^\prime_{\text{u}}=\frac{r_{\text{m}}}{r} C_{\text{um}}

Then

\frac{C_{\text{u}}}{C^\prime_{\text{u}}} =\frac{r}{r_{\text{m}}} \times \frac{r}{r_{\text{m}}} =\frac{r^2}{r^2_{\text{m}}}

(3) The value of the constant \lambda=1/r^2_{\text{m}} .
(4) The relation between the axial velocities.

(i) For general power with N = 1 at radius (r), the whirl velocity is C_{\text{a}}

\frac{C_{\text{a}}}{C_{\text{am}}} =\left\{1-\tan^2 \alpha_{\text{m}}\left(\frac{N+1}{N}\right) \left[\left(\frac{r}{r_{\text{m}}} \right)^{\text{2N}} -1\right] \right\} ^{1/2}

For N = 1

\frac{C_{\text{a}}}{C_{\text{am}}} =\left\{1-2\tan^2\alpha_{\text{m}} \left[\left(\frac{r}{r_{\text{m}}} \right)^2-1 \right] \right\} ^{1/2}

(ii) For free vortex design at radius (r), the whirl velocity is C^\prime_{\text{a}}

C^\prime_{\text{a}}=C_{\text{am}} \quad \text{or} \quad \frac{C^\prime_{\text{a}}}{C_{\text{am}}} =1

Then

\frac{C_{\text{a}}}{C^\setminus _{\text{a}}} =\left\{1-2\tan^2 \alpha_{\text{m}}\left[\left(\frac{r}{r_{\text{m}}} \right)^2-1 \right] \right\} ^{1/2}

B
(i) At the mean (Figure 14.25)

U_{\text{m}}=340 \text{ m/s} \quad \text{ and } \quad \frac{U_{\text{m}}}{C_{\text{a2}}} =1.25, \text{then} \\ \frac{340}{C_{\text{a2}}} =1.25,\\ C_{\text{a2m}}=C_{\text{a3m}}=272 \text{ m/s} \\ C_{\text{u2}}=C_{\text{a2}}\tan \alpha_2 \\ C_{\text{u2}}=272 \tan (58.5), \quad C_{\text{u2m}}=443.86 \text{ m/s} \\ C_{\text{u3}}=C_{\text{a3}}\tan \alpha_3 \\ C_{\text{u3}}=272 \tan(10), \quad C_{\text{u3m}}=47.96 \text{ m/s}

(ii) At the root (Figure 14.26)

\alpha_{2\text{r}}=\alpha_{\text{2m}}=58.5^\circ \\ \frac{U_{\text{m}}}{U_{\text{r2}}} =\left(\frac{r_{\text{m}}}{r_{\text{r}}} \right) _2 \\ \frac{340}{U_{\text{r2}}} =1.16, \quad U_{\text{r2}}=293.1 \text{ m/s} \\ \frac{U_{\text{m}}}{U_{\text{r3}}} =\left(\frac{r_{\text{m}}}{r_{\text{r}}} \right) _3 \\ \frac{340}{U_{\text{r3}}} =1.22 , \quad U_{\text{r3}}=278.69 \text{ m/s} \\ C_{\text{a2r}}=C_{\text{a2m}}\left(\frac{r_{\text{m}}}{r_{\text{r}}} \right) _2^{\sin^2 \alpha_2} \\ C_{\text{a2r}}=272(1.16)^{\sin^2(58.5)}=302.99 \text{ m/s} \\ C_{\text{u2r}}=C_{\text{u2m}}\left(\frac{r_{\text{m}}}{r_{\text{r}}} \right) _2^{\sin^2\alpha_2} \\ C_{\text{u2r}}=443.86(1.16)^{\sin^2(58.5)}=494.43 \text{ m/s} \\ \tan \alpha_2-\tan \beta_{2\text{r}}=\frac{U_{\text{2r}}}{C_{\text{a2r}}} \\ \tan (58.5)-\tan \beta_{\text{2r}}=\frac{293.1}{302.99} , \quad \beta_{\text{2r}}=33.6 \\ C^2_{\text{a3r}}=C^2_{\text{a3m}}+2U_{\text{m}}C_{\text{u2m}}\left[1-\left(\frac{r_{\text{r}}}{r_{\text{m}}} \right)_3^{\cos^2 \alpha_2} \right] \\ C^2_{\text{a3r}}=(272)^2+2 \times 340 \times 443.86\left[1-\left(\frac{1}{1.22} \right)^{\cos^2(58.5)} \right] , \quad C_{\text{a3r}}=299.89 \text{ m/s} \\ (rC_{\text{u}})_3=\text{constant} \\ (r_{\text{r}}C_{\text{ur}})_3=(r_{\text{m}}C_{\text{um}})_3 \\ C_{\text{u3r}}=C_{\text{u3m}}\left(\frac{r_{\text{m}}}{r_{\text{r}}} \right) _3 \\ C_{\text{u3r}}=47.96 \times 1.22=58.511 \text{ m/s} \\ \tan \alpha_3=\frac{C_{\text{u3}}}{C_{\text{a3}}} =\frac{58.11}{299.89} , \quad \alpha_3=11.04^\circ \\ \tan \beta_3-\tan \alpha_3=\frac{U_3}{C_{\text{a3}}} \\ \tan \beta_3-\tan (11.04)=\frac{278.69}{299.89} , \quad \beta_3=48.35^\circ

(iii) At the tip (Figure 14.27)

\alpha_{\text{2t}}=\alpha_{\text{2m}}=58.5^\circ \\ \frac{U_{\text{m}}}{U_{\text{t2}}} =\left(\frac{r_{\text{m}}}{r_{\text{t}}} \right) _2 \\ \frac{340}{U_{\text{t2}}} =0.88, \quad U_{\text{t2}}=386.36 \text{ m/s} \\ \frac{U_{\text{m}}}{U_{\text{t3}}} =\left(\frac{r_{\text{m}}}{r_{\text{t}}} \right) _3 \\ \frac{340}{U_{\text{t3}}} =0.85, \quad U_{\text{t3}}=400 \text{ m/s} \\ C_{\text{a2t}}=C_{\text{a2m}}\left(\frac{r_{\text{m}}}{r_{\text{t}}} \right) _2^{\sin^2 \alpha_2} \\ C_{\text{a2t}}=272(0.88)^{\sin^2 (58.5)}=247.86 \text{ m/s} \\ C_{\text{u2t}}=C_{\text{2um}}\left(\frac{r_{\text{m}}}{r_{\text{t}}} \right) _2^{\sin^2\alpha_2} \\ C_{\text{u2t}}=443.86(0.88)^{\sin^2(58.5)}=404.46 \text{ m/s} \\ \tan \alpha_{2\text{t}}- \tan \beta_{\text{2t}}=\frac{U_{\text{2t}}}{C_{\text{a2t}}} \\ \tan (58.5)-\tan \beta_{\text{2t}}=\frac{386.36}{247.86} , \quad \beta_{\text{2t}}=3.87^\circ \\ C^2_{\text{a3t}}=C^2_{\text{a3m}}+2U_{\text{m}}C_{\text{u2m}}\left[1-\left(\frac{r_{\text{t}}}{r_{\text{m}}} \right)_3^{\cos^2 \alpha_2} \right] \\ C^2_{\text{a3t}}=(272)^2+2 \times 340 \times 443.86\left[1-\left(\frac{1}{0.85} \right)^{\cos^2(58.5)} \right] \\ C_{\text{a3t}}=245.54 \text{ m/s} \\ (rC_{\text{u}})_3=\text{constant} \\ (r_{\text{t}}C_{\text{ut}})_3=(r_{\text{m}}C_{\text{um}})_3 \\ C_{\text{u3t}}=C_{\text{u3m}}\left(\frac{r_{\text{m}}}{r_{\text{t}}} \right) _3 \\ C_{\text{u3t}}= 47.96 \times 0.85=40.766 \text{ m/s} \\ \tan \alpha_{\text{3t}}=\frac{C_{\text{u3t}}}{C_{\text{a3t}}} =\frac{40.766}{245.54} , \quad \alpha_{\text{3t}}=9.43 \\ \tan \beta_{\text{3t}}-\tan \alpha_{\text{3t}}=\frac{U_{\text{3t}}}{C_{\text{a3t}}} \\ \tan \beta_{\text{3t}}-\tan (9.43)=\frac{400}{245.54} , \quad \beta_{\text{3t}}=60.88^\circ

14.2526
14.27

Related Answered Questions