Holooly Plus Logo

Question 14.7: An axial flow turbine is to be cooled by forced convection. ......

An axial flow turbine is to be cooled by forced convection. The temperature of hot gases is 1200 K and the temperature of the coolant air extracted from the compressor is 350 K. The gas mass flow rate is 50 kg/s and the coolant air is 2% of the hot gases. The heat transfer coefficients of the hot gases and coolant are, respectively, 1200 and 1000 W/m²· K. The perimeter of the turbine blade section and the cooling passages are 0.12 and 0.06 m, respectively. The blade height is 0.1 m.
It is required to calculate the temperatures of the coolant and blade height along the blade.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The above data can be rewritten as

T_{\text{g}}=1200 \text{ K}, \quad T_{\text{cr}}=350 \text{ K}, \quad \dot{m}_{\text{g}}=50 \text{ kg/s}, \quad \dot{m}_{\text{c}}=1 \text{ kg/s}, \\ h_{\text{g}}=1200 \text{ W/m}^2 \text{/K}, \quad h_{\text{c}}=1000 \text{ W/m}^2 \text{/K} , \quad S_{\text{g}}=0.12 \text{ m}, \quad S_{\text{c}}=0.06 \text{ m} \\ L=0.1 \text{ m}

From Equation 14.85a

T_{\text{g}}-T_{\text{b}}=(T_{\text{g}}-T_{\text{br}})e^{-Kl/L} \quad \quad \quad (14.85\text{a}) \\ \frac{K}{L} =\frac{h_{\text{g}}S_{\text{g}}}{\dot{m}_{\text{c}}C_{\text{PC}}[1+(h_{\text{g}}S_{\text{g}}/h_{\text{c}}S_{\text{c}})]} =\frac{1200 \times 0.12}{1 \times 1005\left[1+\frac{1200 \times 0.12}{1000 \times 0.06} \right] } =0.04214

(i) The temperature of the coolant (T_{\text{c}}) is obtained from Equation 14.88, namely,

\frac{T_{\text{g}}-T_{\text{c}}}{T_{\text{g}}-T_{\text{cr}}} =e^{-Kl/L} \\ \frac{1200-T_{\text{c}}}{1200-350} =e^{-0.042141}

Thus, an expression for the coolant temperature along the blade height is expressed as

T_{\text{C}}=1200-850e^{-0.04214 l}

(ii) The Temperature of the blade (T_{\text{b}}) is obtained from Equation 14.90, or

\frac{T_{\text{b}}-T_{\text{cr}}}{T_{\text{g}}-T_{\text{cr}}} =1-\frac{e^{(-K/L)}l}{[1+(h_{\text{g}}S_{\text{g}}/h_{\text{c}}S_{\text{c}} )]} \\ \frac{T_{\text{b}}-350}{1200-350} =1-\frac{e^{-0.04214l}}{\left[1+\frac{1200 \times 0.12}{1000 \times 0.06} \right] }

Thus, the blade temperature at any point along its height is listed in Table 14.5.

TABLE 14.5
Variations of the Temperatures of Coolant,Blade, and Gas Along the Blade Height

l l/L T_{\text{C}} T_{\text{b}} T_{\text{g}}
0.0 0.0 350 950 1200
0.01 0.1 350.36 950.1 1200
0.02 0.2 350.716 950.21 1200
0.03 0.3 351.074 950.316 1200
0.04 0.4 351.432 950.421 1200
0.05 0.5 351.789 950.526 1200
0.06 0.6 352.146 950.631 1200
0.07 0.7 352.504 950.736 1200
0.08 0.8 352.86 950.841 1200
0.09 0.9 353.218 950.946 1200
0.1 1 353.574 951.05 1200

 

Related Answered Questions