Holooly Plus Logo

Question 14.8: For a forced convection cooling of an axial flow turbine bla......

For a forced convection cooling of an axial flow turbine blade, the following data are given:

Gas temperature T_{\text{g}} = 1500 K
Coolant temperature at inlet T_{\text{cr}} = 320 K
Coolant mass flow rate \dot{m}_{\text{C}} = 10 kg/s
Gas flow rate \dot{m}_{\text{g}} = 33 kg/s
Blade height L = 0.1m
Gas heat transfer coefficient h_{\text{g}} = 1500 W/ K
Wetted perimeter of blade profile S_{\text{g}} = 0.15 m
Parameter (h_{\text{g}}S_{\text{g}}/h_{\text{c}}S_{\text{c}}) = 2

It is required to
(a) Calculate and plot the temperature of the blade material and coolant along the blade height.
(b) Calculate the parameter \phi = T_{\text{G}}-T_{\text{M}}/T_{\text{G}}-T_{\text{C}} from Figure 14.39, where T_{\text{M}} is the maximum blade temperature at tip as calculated above, and T_{\text{C}} is the coolant temperature at the compressor outlet; here it is 695 K.
(c) What is its value for forced convection?
(d) Next use the same bleed mass flow rate ratio \dot{m}_{\text{c}}/\dot{m}_{\text{g}} to calculate the maximum blade temperature T_{\text{m}} at the blade tip for other cooling techniques shown in Figure 14.43.

TABLE 14.5
Variations of the Temperatures of Coolant, Blade, and Gas Along the Blade Height

l l/L T_{\text{C}} T_{\text{b}} T_{\text{g}}
0.0 0.0 350 950 1200
0.01 0.1 350.36 950.1 1200
0.02 0.2 350.716 950.21 1200
0.03 0.3 351.074 950.316 1200
0.04 0.4 351.432 950.421 1200
0.05 0.5 351.789 950.526 1200
0.06 0.6 352.146 950.631 1200
0.07 0.7 352.504 950.736 1200
0.08 0.8 352.86 950.841 1200
0.09 0.9 353.218 950.946 1200
0.1 1 353.574 951.05 1200

 

14.39
14.43
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

1. The blade temperature is expressed by the relation (14.90), from which

T_{\text{b}}=T_{\text{cr}}+(T_{\text{g}}-T_{\text{cr}})\left[1-\frac{e^{-Kl/L}}{1+h_{\text{g}}S_{\text{g}}/h_{\text{c}}S_{\text{c}}} \right] =320+1180\left[1-\frac{e^{-Kl/L}}{3} \right] \\ \frac{K}{L} =\frac{h_{\text{g}}S_{\text{g}}}{\dot{m}_{\text{c}}C_{\text{pc}}[1+(h_{\text{g}}S_{\text{g}}/h_{\text{c}}S_{\text{c}})]} =\frac{1500 \times 0.15}{1.0 \times 1005(1+2)} =0.0746 \\ \therefore T_{\text{b}}=320+1180\left[1-\frac{e^{-0.0746 \ l}}{3} \right] \quad \quad \quad (1)

The coolant temperature is to be calculated from the relation

T_{\text{C}}=T_{\text{g}}-(T_{\text{g}}-T_{\text{b}})[1+(h_{\text{s}}S_{\text{g}}/h_{\text{c}}S_{\text{c}})] \\ T_{\text{C}}=1500-3(1500-T_{\text{b}}) \quad \quad \rightarrow (2)

From Equations 1 and 2, T_{\text{b}} \text{ and } T_{\text{g}} are calculated at different blade heights

The blade and coolant temperature distribution along the blade height are plotted in Figure 14.43.
Variation of blade and coolant temperatures along the blade height.

2. Calculate the parameter (φ) and (T_{\text{M}})

\text{Since} \ \phi = \frac{T_{\text{G}}-T_{\text{M}}}{T_{\text{G}}-T_{\text{C}}} \\ T_{\text{M}}=T_{\text{G}}-\phi(T_{\text{G}}-T_{\text{C}})

Since \dot{m}_{\text{c}}/\dot{m}_{\text{g}} = 3%, from Figure 14.39, the value of Φ is determined and the maximum blade temperature for different cooling techniques is calculated and listed in Table 14.6.
As seen from the table, transpiration method gives the minimum value of the maximum temperature, which assures that it is the best cooling technique.

I(m) T_{\text{b}}(K) T_{\text{C}}(K)
0 1106.6 319.8 Root
0.025 1107.4 322.2
0.05 1108.1 324.3 Mean
0.075 1108.8 326.4
0.1 1109.9 329.7 Tip

 

 

TABLE 14.6
Variation of the Maximum Blade Temperature Based on Different Cooling Techniques
Cooling Technique φ \mathbf{T_{m}(K) } 
1 Simple radial flow 0.395 1182
2 L.E Impingement/no film 0.466 1124.9
3 Multipass/trip strips 0.536 1068.5
4 Film/cross flow impingement 0.611 1008
5 Transpiration 0.69 944.6

Related Answered Questions