Holooly Plus Logo

Question 14.4: An axial turbine has the following data: ζ = 0.8, α2m = 60, ......

An axial turbine has the following data:

\zeta=0.8, \quad \alpha_{\text{2m}}=60, \quad \alpha_3=0, \quad \Lambda_{\text{m}}=0.5 \quad \text{and} \quad C_{\text{am}}=200 \text{ m/s}

Three design methods are to be examined. The governing equations for each are as follows:
Method (1)

C_{\text{u2m}}=C_{\text{u2h}}

Method (2)

\frac{C_{\text{a2t}}}{C_{\text{a2h}}} =\zeta^{\sin^2 \alpha_2}

Method (3)

\frac{C_{\text{u2t}}}{C_{\text{u2h}}} =\zeta

It is required to
1. Identify the design method.
2. Calculate the values of the angles \alpha_2,\alpha_3, \beta_2, \beta_3 at the hub, mean, tip sections.
3. Draw the velocity triangles at hub and tip.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Given data

\zeta=0.8, \quad \alpha_3=0 , \quad \alpha_{\text{2m}}=60 \\ \Lambda_{\text{m}}=0.5 \quad Ca_{\text{m}}=200 \text{ m/s}

At any radius along the blade

\alpha_2=\tan^{-1}\left(\frac{C_{\text{u2}}}{C_{\text{a2}}} \right) , \quad \beta_2=\tan^{-1}\left(\frac{C_{\text{u2}}-U}{C_{\text{a2}}} \right) \\ \frac{r_{\text{h}}}{r_{\text{m}}} =\frac{2\zeta}{1+\zeta} =\frac{1.6}{1.8} =0.889 \\ \frac{r_{\text{t}}}{r_{\text{m}}} =\frac{2}{1+\zeta} =\frac{2}{1.8} =1.111

At mean section

C_{\text{a2}}=200 \text{ m/s} \\ C_{\text{u2}}=C_{\text{a2}} \times \tan \alpha_2=346.41 \text{ m/s} \\ C_{\text{u3}}=0

Moreover, since Λ = 0.5, then

\alpha_2=\beta_3=60^\circ, \quad \alpha_3=\beta_2=0 \\ U=C_{\text{u2}}=346.41 \text{ m/s}

The rotational speed at any radius is

U_{\text{i}}=\frac{r_{\text{i}}}{r_{\text{m}}} \times U_{\text{m}}, \quad \text{ thus} \\ U_{\text{h}}=307.92 \text{ m/s}\quad \text{and }\quad U_{\text{t}}=384.9 \text{ m/s}

Case (1)
Since C_{\text{u}2} = constant along the blade height, from Equation 14.57b

C_{\text{a}}\frac{\text{d}C_{\text{a}}}{\text{d}r} +C_{\text{u}}\frac{\text{d}C_{\text{u}}}{\text{d}r} +\frac{C^2_{\text{u}}}{r} =0     (14.57)

this design method is the general power case with N = 0.
The axial speed (C_{\text{a}2}) is calculated from Equation 14.59, which is expressed in state (2) as

\frac{C_{\text{a}}}{C_{\text{am}}}=\left\{1-\tan^2 \alpha_{\text{m}}\left(\frac{N+1}{N} \right)\left[\left(\frac{r}{r_{\text{m}}} \right)^{2N} -1\right] \right\}^{1/2} ,\quad N\neq 0 \quad \quad \quad (14.59) \\ C_{\text{a2}}=C_{\text{am}}\left[1-2\tan ^2\alpha_{\text{m}} \ln\frac{r}{r_{\text{m}}} \right] ^{1/2}

Since \alpha_3 = 0, from the same Equation 14.59 but applied at state (2), C_{\text{a}}3 = constant from blade hub to tip. Moreover, since \alpha_3=0,C_{\text{u}3}=0 along the blade height. The angles \beta_2 \text{ and } \beta_3 are calculated from Equation 14.1c.

\frac{U}{C_{\text{a}}} =\tan \alpha_2-\tan \beta_2=\tan \beta_3-\tan \alpha_3       (14.1c)

The results are summarized in Table 14.4a.
A plot for the results is shown in Figure 14.19.
The velocity triangles are shown in Figure 14.20.

Case (2)

Since \frac{C_{\text{a2t}}}{C_{\text{a2h}}} =\zeta^{\sin^2\alpha_2}

\frac{C_{\text{a2t}}}{C_{\text{a2h}}} =\left(\frac{r_{\text{h}}}{r_{\text{t}}} \right) ^{\sin^2 \alpha_2}=\left(\frac{r_{\text{m}}}{r_{\text{t}}} \right) ^{\sin^2\alpha_2}\left(\frac{r_{\text{h}}}{r_{\text{m}}} \right) ^{\sin^2 \alpha_2}

and

\frac{C_{\text{a2t}}}{C_{\text{a2h}}} =\frac{C_{\text{a2t}}}{C_{\text{a2m}}} =\frac{C_{\text{a2m}}}{C_{\text{a2h}}}

This design method is the constant nozzle angle at state (2), or

C_{\text{a2}}=C_{\text{a2m}}\left(\frac{r_{\text{m}}}{r} \right) ^{\sin^2 \alpha_2}, C_{\text{u2}}=C_{\text{u2m}}\left(\frac{r_{\text{m}}}{r} \right) ^{\sin^2 \alpha_2},C_2=C_{2\text{m}}\left(\frac{r_{\text{m}}}{r} \right) ^{\sin^2 \alpha_2}

At state (3),\alpha_3=0 ,\quad C_{\text{u3}}=0

C^2_{\text{a3}}=C^2_{\text{a3m}}+2U_{\text{m}}C_{\text{u2m}}\left[1-\left(\frac{r}{r_{\text{m}}} \right)^{\cos^2 \alpha_2} \right]

It is deduced here that all the velocity components C_{\text{u2}},C_{a2}, \text{ and }C_{\text{a3}} are variables. The final results are given in Table 14.4b.
A plot for the results is shown in Figure 14.21.

The velocity triangles are shown in Figure 14.22.
Case (3)
Since

\frac{C_{\text{u2t}}}{C_{\text{u2h}}} =\zeta=\frac{r_{\text{h}}}{r_{\text{t}}}

or rC_{u2} = constant, this design method is called free vortex.
At the rotor outlet, the flow is also a free vortex, or rC_{\text{u3}} = constant.
The axial velocity is then constant at both states (2) and (3), or C_{\text{a2}}=C_{\text{a2m}}=C_{\text{a3}}=C_{\text{a3m}}=\text{constant}

The results are summarized in Table 14.4c.

A plot for the results is shown in Figure 14.23, while the velocity triangles are shown in Figure 14.24.

TABLE 14.4a
Variations of Speeds and Flow Angles along the Blade Height for Case (1)
C_{\text{a2}} (m/s) C_{\text{a3}} (m/s) C_{\text{u2}} (m/s) C_{\text{u3}} (m/s) \alpha_2 \alpha_3 \beta_2 \beta_3
Hub 261.3 200 346.4 0 52.97 0 8.4 56.99
Mean 200 200 346.4 0 60 0 0 60
Tip 121.3 200 346.4 0 70.7 0 -17 62.54

 

TABLE 14.4b
Variations of speeds and flow angles along the blade height for case (2)
C_{\text{a2}} C_{\text{a3}} C_{\text{u2}} C_{\text{u3}} \alpha_2 \alpha_3 \beta_2
Hub 218.47 216.71 378.4 0 60 0 17.885
Mean 200 200 346.41 0 60 0 0
Tip 184.8 183.29 320.09 0 60 0 -19.35

 

TABLE 14.4c
Variations of speeds and flow angles along the blade height for case (3)
C_{\text{a2}} C_{\text{a3}} C_{\text{u2}} C_{\text{u3}} \alpha_2 \alpha_3 \beta_2 \beta_3
Hub 200 200 389.7 0 62.833 0 22.247 56.994
Mean 200 200 346.41 0 60 0 0 60
Tip 200 200 311.77 0 57.32 0 -20.85 62.549
14.19
14.201
14.202
14.21
14.221
14.222
14.23
14.241
14.242

Related Answered Questions