Holooly Plus Logo

Question 14.6: An axial turbine stage is to be designed by a constant nozzl......

An axial turbine stage is to be designed by a constant nozzle design. It has the following data:

\Delta T_0=150 \text{ K}, \quad U_{\text{2h}}=300 \text{ m/s}, \quad U_{\text{2t}}=400 \text{ m/s}, \quad \alpha_2=60, \quad \alpha_3=0, \quad \text{and} \quad \zeta_3=0.75

(a) Draw the velocity triangles at the hub, mean, and tip sections.
(b) Use the approximate solution for the constant nozzle blading, namely, \alpha_2 = constant and rC_{\text{u2}} = constant to calculate the axial and tangential velocities at the hub, mean, and tip sections at stations 2 and 3.
(c) Using free vortex design calculate the axial and tangential velocity as above.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

(a) Constant nozzle angle design
The axial turbine stage has a constant nozzle outlet angle and zero exit swirl. Since ζ = 0.75,

\frac{r_{\text{m}}}{r_{\text{t}}} =\frac{U_{\text{m}}}{U_{\text{t}}} =\frac{1+\zeta}{2} =0.875 \quad \quad \quad (\text{a})

and

\frac{r_{\text{m}}}{r_{\text{t}}} =\frac{U_{\text{m}}}{U_{\text{t}}} =\frac{1+\zeta}{2\zeta} =1.166

The velocity triangle are

\frac{C_2}{C_{\text{2m}}} =\frac{C_{\text{a2}}}{C_{\text{a2m}}} =\frac{C_{\text{u2}}}{C_{\text{u2m}}} =\left(\frac{r_{\text{m}}}{r} \right) ^{(\sin \alpha_2)^2} \\ (C_{\text{a3}})^2=(C_{\text{a3m}})^2+2U_{\text{m}} \times C_{\text{u2m}}\left(1-\left(\frac{r}{r_{\text{m}}} \right)^{(\cos \alpha_2)^2} \right)

The specific work is given by the relation

Cp\Delta T_0=U_{\text{m}}\Delta C_{\text{um}}=U_{\text{m}}C_{\text{u2m}} \\ C_{\text{u2m}}=\frac{Cp\Delta T_0}{U_{\text{m}}} =492 \text{ m/s} \\ C_{\text{a2m}}=C_{\text{u2m}}\cot \alpha_2 \\ C_{\text{a2m}}=C_{\text{a3m}}=284 \text{ m/s} \\ \frac{C_{\text{a2}}}{C_{\text{a2m}}} =\frac{C_{\text{u2}}}{C_{\text{u2m}}} =\left(\frac{r_{\text{m}}}{r}\right) ^{(\sin \alpha_2)^2}

At hub section

C_{\text{a2h}}=C_{\text{a2m}}\left(\frac{r_{\text{m}}}{r_{\text{h}}} \right) ^{(\sin \alpha_2)^2}=318.8 \text{ m/s} \\ C_{\text{u2h}}=C_{\text{u2m}}\left(\frac{r_{\text{m}}}{r_{\text{h}}} \right)^{(\sin \alpha_2)^2} =552.2 \text{ m/s}

At the tip section

C_{\text{a2t}}=C_{\text{a2m}}\left(\frac{r_{\text{m}}}{r_{\text{t}}} \right) ^{(\sin \alpha_2)^2}=256.93 \text{ m/s} \\ C_{\text{u2t}}=C_{\text{u2m}}\left(\frac{r_{\text{m}}}{r_{\text{t}}} \right) ^{(\sin \alpha_2)^2}=446.6 \text{ m/s}

At the rotor outlet 

(C_{\text{a3}})^2-(C_{\text{a3m}})^2=2U_{\text{m}} \times C_{\text{u2m}}\left(1-\left(\frac{r}{r_{\text{m}}} \right)^{(\cos \alpha_2)^2} \right) . \\ (C_{\text{a3t}})=\sqrt{(C_{\text{a3m}})^2+2U_{\text{m}}\times C_{\text{u2m}}\left(1-\left(\frac{r_{\text{t}}}{r_{\text{m}}} \right)^{(\cos \alpha_2)^2} \right) }=262.1 \text{ m/s} \\ (C_{\text{a3h}})=\sqrt{(C_{\text{a3m}})^2+2U_{\text{m}}\times C_{\text{u2m}}\left(1-\left(\frac{r_{\text{h}}}{r_{\text{m}}} \right)^{(\cos \alpha_2)^2} \right) }=306 \text{ m/s}

(b) Approximates constant nozzle (\alpha_2 = constant, rC_{\text{u2}} = constant)
The governing equations are listed here:

r_{\text{m}}C_{\text{u2m}}=r_{\text{h}}C_{\text{u2h}}=r_{\text{t}}C_{\text{u2t}} \\ C_{\text{u2h}}=\frac{r_{\text{m}}C_{\text{u2m}}}{r_{\text{h}}} \\ C_{\text{a2h}}=C_{\text{u2h}}\cot \alpha_2 \\ C_{\text{u2t}}=\frac{r_{\text{m}}C_{\text{u2m}}}{r_{\text{t}}} \\ C_{\text{a2t}}=C_{\text{u2t}} \cot \alpha_2 \\ C_{\text{u3h}}=C_{\text{u3t}}=C_{\text{u3m}}=0 \\ C^2_{\text{a3}}=C^2_{\text{a3m}}+2U_{\text{m}}C_{\text{u2m}}\left[1-\left(\frac{r}{r_{\text{m}}} \right)^{\cos^2 \alpha_2} \right] \\ (C_{\text{a3t}})=\sqrt{(C_{\text{a3m}})^2+2U_{\text{m}}\times C_{\text{u2m}}\left(1-\left(\frac{r_{\text{t}}}{r_{\text{m}}} \right)^{(\cos \alpha_2)^2} \right) } \\ (C_{\text{a3h}})=\sqrt{(C_{\text{a3m}})^2+2U_{\text{m}}\times C_{\text{u2m}}\left(1-\left(\frac{r_{\text{h}}}{r_{\text{m}}} \right)^{(\cos \alpha_2)^2} \right) }

(c) Free vortex design

(rC_{\text{u}})_2 =\text{constant} \\ C_{\text{a}}= \text{ constant at inlet and outlet to rotor}

(d) Summary of the velocity variations using different design methods

Constant Nozzle

(m/s)

Approximate Constant Nozzle

(m/s)

Free Vortex

(m/s)

C_{\text{a2h}} 318.8 331.2 284
C_{\text{a2m}} 284 284 284
C_{\text{a2t}} 256.9 248.5 284
C_{\text{u2h}} 552.2 573.7 573.7
C_{\text{u2m}} 492 492 492
C_{\text{u2t}} 446.6 430.5 430
C_{\text{a3h}} 306 331.2 284
C_{\text{a3m}} 284 284 284
C_{\text{a3t}} 262.6 248.5 284
14.28

Related Answered Questions