Question 9.19: An overhanging beam ABC of height h has a pin support at A a......

An overhanging beam ABC of height h has a pin support at A and a roller support at B.
The beam is heated to a temperature T_1 on the top and T_2 on the bottom (see Fig. 9-47).
Determine the equation of the deflection curve of the beam, and the deflection \delta_C at end C.

9.47
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Use a four-step problem-solving approach. Combine steps as needed for an efficient solution.
1, 2. Conceptualize, Categorize: The displacement of this beam was investigated at selected points due to a concentrated load at C in Example 9-5, under a uniform load q in Example 9-9, and with uniform load q on AB and load P at C in Example 9-18. Now consider the effect of a temperature differential (T_2 – T_1) on the deflection v(x) of the beam using Eq. (9-137).
\quad\quad\quad \quad {\frac{d^{2}\nu}{d x^{2}}}={\frac{\alpha(T_{2}-{{T}}_{1})}{h}}\qquad\quad(9-138, repeated)
3. Analyze: Integration results in two constants of integration, C_1 ~ and ~ C_2, which must be determined using two independent bounday conditions:

\begin{array}{c}{{ \quad\quad\quad \quad \frac{d}{d x}\nu(x)=\frac{\alpha}{h}(T_{2} – {T}_{1})x+C_{1}}}\quad\quad\quad (a) \\ \quad\quad\quad \quad {{\nu(x)=\frac{\alpha}{h}(T_{2} – {T}_{1})\frac{x^{2}}{2}+C_{1}x+C_{2}} \qquad\quad (b)}\end{array}

The boundary conditions are v(0) = 0 and v(L) = 0. So v(0) = 0, which gives C_2 = 0.
Also, v(L) = 0, which leads to\quad\quad (c)
\quad\quad\quad \quad C_{1}=\frac{1}{L}\bigg[\frac{-\alpha L^{2}}{2h}(T_{2}-T_{1})\bigg]=-\bigg[\frac{L\alpha(T_{2}-T_{1})}{2h}\bigg]\quad\qquad\qquad (d)
Substituting C_1 ~ and ~ C_2 into Eq. (b) results in the equation of the elastic curve of the beam due to temperature differential (T_2 – T_1) as
\quad\quad\quad \quad \nu(x)={\frac{\alpha x(T_{2}-{T_{1}})(x-L)}{2h}}\quad\quad\quad (e)
If x = L + a in Eq. (e), an expression for the deflection of the beam at C is
\quad{\delta}_{C}=\nu(L+a)=\frac{\alpha(L+a)(T_{2}-T_{1})(L+a-L)}{2h}=\frac{\alpha(T_{2}-T_{1})a(L+a)}{2h}\quad(f)
4. Finalize: Linear elastic behavior was assumed here and in earlier examples, so (if desired) the principle of superposition can be used to find the total deflection at C due to simultaneous application of all loads considered in Examples 9-5, 9-9, and 9-18 and for the temperature differential studied here.
Numerical example: If beam ABC is a steel, wide flange HE 700B [see Table F-1] with a length of L = 9 m and with an overhang a = L / 2, compare the deflection at C due to self-weight (see Example 9-9; let q = 2.36 kN/m) to the deflection at C due to temperature differential (T_2  –  T_1) = 3°C.
From Table I-4, the coefficient of thermal expansion for structural steel is a = 12 \times 10^{-6} /°C. The modulus for steel is 210 GPa.
From Eq. (9-68), the deflection at C due to self-weight is \quad\qquad (g)

\begin{array}{c} \quad\quad\quad\quad \delta_{C{q}} = \frac{q a}{24E I_{z}}(a + L)(3a^{2} + a L – L^{2}) \\ \quad\quad\quad\quad = \frac{(2.36~kN/m)(4.5~m)}{24(210~GPa)(256900~cm^4)}(4.5~m + 9~m) \\ \quad\quad\quad\quad \times [3(4.5~m)^2 + 4.5~m(9~m) – (9~m)^2] \\ \quad\quad\quad\quad = 0.224~mm \end{array}

where a = 4.5 m and L = 9.0 m.
The deflection at C due to a temperature differential of only 3°C is from Eq. (f):

\quad\quad\quad\quad \delta_{C T} = {\frac{α(T_{2}-T_{1})a(L+a)}{2h}} \\ \quad\quad\quad \quad = {\frac{(12 \times 10^{-6})(3)(4.5 ~m)(9~ m + 4.5~m)}{2(700~mm)}} = 1.562~mm\quad\quad (h)

The deflection at C due to a small temperature differential is seven times that due to self-weight.

Table F-1
Properties of European Wide-Flange Beams
Designation Mass per meter Area of section Depth of section Width of section Thickness Strong axis 1-1 Weak axis 2-2
G A h b t_w t_f I_1 S_1 r_1 I_2 S_2 r_2
kg/m cm² mm mm mm mm cm⁴ cm³ cm cm⁴ cm³ cm
HE 1000 B 314 400 1000 300 19 36 644700 12890 40.15 16280 1085 6.38
HE 900 B 291 371.3 900 300 18.5 35 494100 10980 36.48 15820 1054 6.53
HE 700 B 241 306.4 700 300 17 32 256900 7340 28.96 14440 962.7 6.87
HE 650 B 225 286.3 650 300 16 31 210600 6480 27.12 13980 932.3 6.99
HE 600 B 212 270 600 300 15.5 30 171000 5701 25.17 13530 902 7.08
HE 550 B 199 254.1 550 300 15 29 136700 4971 23.2 13080 871.8 7.17
HE 600 A 178 226.5 590 300 13 25 141200 4787 24.97 11270 751.4 7.05
HE 450 B 171 218 450 300 14 26 79890 3551 19.14 11720 781.4 7.33
HE 550 A 166 211.8 540 300 12.5 24 111900 4146 22.99 10820 721.3 7.15
HE 360 B 142 180.6 360 300 12.5 22.5 43190 2400 15.46 10140 676.1 7.49
HE 450 A 140 178 440 300 11.5 21 63720 2896 18.92 9465 631 7.29
HE 340 B 134 170.9 340 300 12 21.5 36660 2156 14.65 9690 646 7.53
HE 320 B 127 161.3 320 300 11.5 20.5 30820 1926 13.82 9239 615.9 7.57
HE 360 A 112 142.8 350 300 10 17.5 33090 1891 15.22 7887 525.8 7.43
HE 340 A 105 133.5 330 300 9.5 16.5 27690 1678 14.4 7436 495.7 7.46
HE 320 A 97.6 124.4 310 300 9 15.5 22930 1479 13.58 6985 465.7 7.49
HE 260 B 93 118.4 260 260 10 17.5 14920 1148 11.22 5135 395 6.58
HE 240 B 83.2 106 240 240 10 17 11260 938.3 10.31 3923 326.9 6.08
HE 280 A 76.4 97.26 270 280 8 13 13670 1013 11.86 4763 340.2 7
HE 220 B 71.5 91.04 220 220 9.5 16 8091 735.5 9.43 2843 258.5 5.59
HE 260 A 68.2 86.82 250 260 7.5 12.5 10450 836.4 10.97 3668 282.1 6.5
HE 240 A 60.3 76.84 230 240 7.5 12 7763 675.1 10.05 2769 230.7 6
HE 180 B 51.2 65.25 180 180 8.5 14 3831 425.7 7.66 1363 151.4 4.57
HE 160 B 42.6 54.25 160 160 8 13 2492 311.5 6.78 889.2 111.2 4.05
HE 140 B 33.7 42.96 140 140 7 12 1509 215.6 5.93 549.7 78.52 3.58
HE 120 B 26.7 34.01 120 120 6.5 11 864.4 144.1 5.04 317.5 52.92 3.06
HE 140 A 24.7 31.42 133 140 5.5 8.5 1033 155.4 5.73 389.3 55.62 3.52
HE 100 B 20.4 26.04 100 100 6 10 449.5 89.91 4.16 167.3 33.45 2.53
HE 100 A 16.7 21.24 96 100 5 8 349.2 72.76 4.06 133.8 26.76 2.51
Table I-4
Coefficients of Thermal Expansion
Material Coefficient of
Thermal Expansion a
Material Coefficient of
Thermal Expansion a
10^{-6}/°C 10^{-6}/°C
Aluminum alloys 23 Plastics
Brass 19.1-21.2 Nylon 70–140
Bronze 18-21 Polyethylene 140–290
Cast iron 9.9-12 Rock 5–9
Concrete 7-14 Rubber 130–200
Copper and copper alloys 16.6-17.6 Steel 10–18
Glass 5–11 High-strength 14
Magnesium alloys 26.1-28.8 Stainless 17
Monel (67% Ni, 30% Cu) 14 Structural 12
Nickel 13 Titanium alloys 8.1–11
Tungsten 4.3

Related Answered Questions