Question 12.23: (Malgrange - Ehrenpreiss) Every linear partial differential ......

(Malgrange – Ehrenpreiss) Every linear partial differential operator with constant coefficients P(D) has a fundamental solution, i.e., there exists a solution of the equation

P(D)u=δP(D) u=\delta

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Let us define

K(x)=Rn1J(ξn)=Φ(ξ)exp(2πıxξ)(P(ξ))1dξndξK(x)=\int_{ \mathbf{R} ^{n-1}} \int_{\mathfrak{J}\left(\xi_n\right)=\Phi\left(\xi^{\prime}\right)} \exp (2 \pi \imath x \cdot \xi)(P(\xi))^{-1} d \xi_n d \xi^{\prime}

where, as before, ξ=(ξ1,,ξn1,ξn)=(ξ,ξn), while Φ\xi=\left(\xi_1, \ldots, \xi_{n-1}, \xi_n\right)=\left(\xi^{\prime}, \xi_n\right) \text {, while } \Phi was defined in Example 12.22.
We shall show that K is well defined, and, moreover, is the desired fundamental solution of P. To that end, put first

PN(ξ)=P(ξ)(1+4π2j=1nξj2)P_N(\xi)=P(\xi)\left(1+4 \pi^2 \overset{n}{\underset{j=1}{\sum}} \xi_j^2\right)

where N is a (sufficiently big) natural number. Next, put

KN(x)=Rn1J(ξn)=Φ(ξ)exp(2πıxξ)(PN(ξ))1dξndξK_N(x)=\int_{ \mathbf{R} ^{n-1}} \int_{\mathfrak{J}\left(\xi_n\right)=\Phi\left(\xi^{\prime}\right)} \exp (2 \pi \imath x \cdot \xi)\left(P_N(\xi)\right)^{-1} d \xi_n d \xi^{\prime}

where the function Φ was chosen as in Example 12.22. Since then on the domain of integration it holds PN(ξ)C(1+ξ2)N\left|P_N(\xi)\right| \geq C \cdot\left(1+|\xi|^2\right)^N, the last integral converges for N > n/2.
Next, let us prove

PN(D)KN=δP_N(D) K_N=\delta

Assume φD(Rn)\varphi \in \mathcal {D}( \mathbf{R}^n). Since the adjoint operator to PN(D) is PN(D)P_N(D) \text { is } P_N(-D), it holds

PN(D)KN,φ=KN,PN(D)φ=RnRn1J(ξn)=Φ(ξ)exp(2πıxξ)PN(D)φ(P(ξ))dξndξdx\begin{aligned}\left\langle P_N(D) K_N, \varphi\right\rangle & =\left\langle K_N, P_N(D) \varphi\right\rangle \\& =\int_{ \mathbf{R} ^n} \int_{ \mathbf{R} ^{n-1}} \int_{\mathfrak{J}\left(\xi_n\right)=\Phi\left(\xi^{\prime}\right)} \exp (2 \pi \imath x \cdot \xi) \frac{P_N(-D) \varphi}{(P(\xi))} d \xi_n d \xi^{\prime} d x\end{aligned}
=Rn1J(ξn)=Φ(ξ)(PN(xi))1Rnexp(2πıxξ)(PN(D))φ(x) dx dξn dξ\begin{aligned}= & \int_{ \mathbf{R} ^{n-1}}\int_{\mathfrak{J}\left(\xi_n\right)=\Phi\left(\xi^{\prime}\right)}\left(P_N(-x i)\right)^{-1} \\& \cdot \int_{ \mathbf{R} ^n} \exp (2 \pi \imath x \cdot \xi)\left(P_N(-D)\right) \varphi(x)  d x  d \xi_n  d \xi\end{aligned}
=Rn1J(ξn)=Φ(ξ)Fφ(ξ) dξn dξ=RnFφ(ξ)dξ=φ(0)=δ,φ.\begin{aligned}& =\int_{ \mathbf{R} ^{n-1}}\int_{\mathfrak{J}\left(\xi_n\right)=\Phi\left(\xi^{\prime}\right)} \mathcal {F} \varphi(-\xi)  d \xi_n  d \xi \\& =\int_{ \mathbf{R} ^n} \mathcal {F} \varphi(-\xi) d \xi=\varphi(0)=\langle\delta, \varphi\rangle .\end{aligned}

Note that we used the equality

φ(0)=RnFφ(ξ)dξ\varphi(0)=\int_{ \mathbf{R}^n} \mathcal {F} \varphi(\xi) d \xi

which follows using the inverse Fourier transformation.
So we obtain

δ=PN(D)KN=PN(D)(1Δ)NKN\delta=P_N(D) K_N=P_N(D)(1-\Delta)^N K_N

Now K=(1Δ)NKN, hence K=(1-\Delta)^N K_N \text {, hence } is the fundamental solution of the operator P(D).

Related Answered Questions

Question: 12.14

Verified Answer:

a) Let \varphi \in \mathcal {D} ( \mathbf{R...
Question: 12.10

Verified Answer:

a) Let y \in \mathcal {D} ^{\prime}( \mathb...