Question 2.9: Tank Drainage Consider the efflux of a liquid through a smoo......

Tank Drainage
Consider the efflux of a liquid through a smooth orifice of area A0\rm A_0 at the bottom of covered tank (AT\rm A_T). The depth of the liquid is y. The pressure in the tank exerted on the liquid is pT\rm p_T while the pressure outside of the orifice is pa\rm p_a. Develop an expression for v0(y)\mathrm{v_0(y)}.

Concept Assumptions Sketch
• Bernoulli’s equation applied to points ➀ and ➁ • Steady frictionless flow
• Mass conservation • Streamline represents all fluid element trajectories
• Averaged velocities
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

At descending point ➀ and exit point ➁, most of the information is given. Thus, Eq. (2.28) now reads:

v122+p1ρ+gz1=v222+p2ρ+gz2{\frac{\mathrm{v}_{1}^{2}}{2}}+{\frac{\mathrm{p}_{1}}{\mathrm{\rho }}}+{\mathrm{g}}\mathrm{z_1}={\frac{\mathrm{v}_{2}^{2}}{2}}+{\frac{\mathrm{p}_{2}}{\mathrm{\rho }}}+{{{\mathrm{gz_2}}}}                          (2.28)

v122+pTρ+gy=v022+paρ+0{\frac{\mathrm{v}_{1}^{2}}{2}}+{\frac{\mathrm{p}_{T}}{\mathrm{\rho }}}+{\mathrm{g}}\mathrm{y}={\frac{\mathrm{v}_{0}^{2}}{2}}+{\frac{\mathrm{p}_{a}}{\mathrm{\rho }}}+{{{0}}}

The velocities are related via continuity (see Eq. (2.7)):

ΣQin=ΣQout\Sigma{\rm Q}_{\mathrm{in}}=\Sigma{\rm Q}_{\mathrm{out}}                          (2.7)

v1AT=v0A0\mathrm{v_1\,A_T=v_0\,A_0}

so that with v1=v0A0/AT,\mathrm{v_1=v_0\,A_0/A_T},

v0=[2/ρ(pTpa)+2gy1A0/AT2]1/2\mathrm{v_0=\left[\frac{2/ρ(p_T-p_a)+2gy}{1-\left\lgroup A_0/A_T\right\rgroup^2 } \right] ^{1/2}}

Comment: Toricelli’s law, v=2gh\mathrm{v=\sqrt{2gh} } can be directly recovered when Δp ≈ 0 and AT>>AO\mathrm{A_T >> A_O} . Clearly, the liquid level y and pressure drop pTpA\mathrm{p_T − p_A} are the key driving forces. The solution breaks down when AOAT\mathrm{A_O → A_T}.

Related Answered Questions