Question 15.2: Consider a pseudo-NMOS inverter fabricated in a 0.25-μm CMOS...

Consider a pseudo-NMOS inverter fabricated in a 0.25-μm CMOS technology for which μnCox = 115 μA/V², μpCox = 30 μA/V², Vtn = −Vtp = 0.5 V, and VDD = 2.5 V. Let the W/L ratio of QP be (0.25 μm/0.25 μm) and r = 9. Find:

(a) VOH, VOL, VIL, VIH , VM, NMH, and NML

(b) (W/L)n

(c) Istat and PD

(d) tPLH , tPHL, and tP, assuming a total capacitance at the inverter output of 7 fF

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) VOH = VDD  = 2.5 V

VOL is determined from Eq. (15.24) as

V_{OL} = (V_{DD}  –  V_{t}) \left[1  –  \sqrt{1  –  \frac{1}{r}} \right]                          (15.24)

V_{OL} = (2.5  –  0.5) \left[1  –  \sqrt{1  –  \frac{1}{9}} \right] = 0.11  V

VIL is determined from Eq. (15.20) as

V_{IL} = V_{t} + \frac{V_{DD}  –  V_{t}}{\sqrt{ r (r  +  1})}                            (15.20)

V_{IL} = 0.5 + \frac{2.5  –  0.5}{\sqrt{9 (9  +  1)}} = 0.71  V

VIH is determined from Eq. (15.23) as

V_{IH} = V_{t} + \frac{2}{\sqrt{3  r}} (V_{DD}  –  V_{t})                   (15.23)

V_{IH} = 0.5 + \frac{2}{\sqrt{3 × 9}} × (2.5  −  0.5) = 1.27  V

VM is determined from Eq. (15.21) as

V_{M} = V_{t} + \frac{V_{DD}  –  V_{t}}{\sqrt{r  +  1}}                   (15.21)

V_{M} = 0.5 + \frac{2.5  –  0.5}{\sqrt{9  +  1}} = 1.13  V

The noise margins can now be determined as

NMH = VOH − VIH = 2.5 − 1.27 = 1.23 V
NML = VIL − VOL = 0.71 − 0.11 = 0.60 V

Observe that the noise margins are not equal and that NML is rather low.

(b) The W/L ratio of QN can be found from

\frac{μ_{n}C_{ox} (W/L)_{n}}{μ_{p}C_{ox}(W/L)_{p}} = 9

\frac{115  ×  (W/L)_{n}}{30  ×  1} = 9

Thus,

(W/L)n = 2.35

(c) The dc current in the low-output state can be determined from Eq. (15.25) as

I_{stat} = \frac{1}{2} k_{p}(V_{DD}  –  V_{t})^{2}                        (15.25)

I_{stat} = \frac{1}{2} × 30 × 1 (2.5  −  0.5)^{2} = 60  μA

The static power dissipation can now be found from

PD = IstatVDD

= 60 × 2.5 = 150 μW

(d) The low-to-high propagation delay can be found by using Eqs. (15.28) and (15.29):

t_{PLH} \simeq \frac{α_{p}C}{k_{p}V_{DD}}              (15.28)

α_{p} = 2 / \left[\frac{7}{4}  –  3 \left(\frac{V_{t}}{V_{DD}}\right) + \left(\frac{V_{t}}{V_{DD}}\right)^{2} \right]                (15.29)

αp = 1.68

t_{PLH} = \frac{1.68  ×  7  ×  10^{−15}}{30  ×  10^{−6}  ×  1  ×  2.5} = 0.16  ns

The high-to-low propagation delay can be found by using Eqs. (15.30) and (15.31):

t_{PHL} \simeq \frac{α_{n}C}{k_{n}V_{DD}}              (15.30)

α_{n} = 2 / \left[1 + \frac{3}{4} \left(1  –  \frac{1}{r}\right) – \left(3  –  \frac{1}{r}\right) \left(\frac{V_{t}}{V_{DD}}\right) + \left(\frac{V_{t}}{V_{DD}}\right)^{2} \right]                (15.31)

αn = 1.77

t_{PHL} = \frac{1.77  ×  7  ×  10^{−15}}{115  ×  10^{−6}  ×  2.35  ×  2.5} = 0.02  ns

Now, the propagation delay can be determined, as

t_{p} = \frac{1}{2} (0.16 + 0.02) = 0.09  ns

Although the propagation delay is considerably greater than that of a standard CMOS inverter, this is not an entirely fair comparison: Recall that the advantage of pseudo-NMOS occurs in gates with large fan-in, not in a single inverter.

Related Answered Questions