Question 14.7: Determining the Effective Load Capacitance C and the Propaga...

Determining the Effective Load Capacitance C and the Propagation Delay

Consider a CMOS inverter fabricated in a 0.25-μm process for which Cox = 6 fF/μm², μnCox = 110 μA/V², μpCox = 30 μA/V², Vtn = –Vtp = 0.5 V, and VDD = 2.5 V. The W/L ratio of QN is 0.375 μm/0.25 μm, and that for QP is 1.125 μm/0.25 μm. The gate–source and gate–drain overlap capacitances are specified to be 0.3 fF/μm of gate width. Further, the effective (large-signal) values of drain–body capacitances are Cdbn = 1 fF and Cdbp = 1 fF. The wiring capacitance Cw = 0.2 fF. Find tPHL, tPLH , and tP when the inverter is driving an identical inverter.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

First, we determine the value of the equivalent capacitance C using Eqs. (14.58) and (14.59),

Cg3 + Cg4 = (WL)3Cox + (WL)4Cox + Cgsov3 + Cgdov3 + Cgsov4 + Cgdov4                (14.58)

C = 2 Cgd1 + 2 Cgd2 +Cdb1 + Cdb2 + Cg3 + Cg4 + Cw                 (14.59)

where

Cgd1 = 0.3 × Wn = 0.3 × 0.375 = 0.1125 fF

Cgd2 = 0.3 × Wp = 0.3 × 1.125 = 0.3375 fF

Cdb1 = 1 fF

Cdb2 = 1 fF

Cg3 = 0.375 × 0.25 × 6 + 2 × 0.3 × 0.375 = 0.7875 fF

Cg4 = 1.125 × 0.25 × 6 + 2 × 0.3 × 1.125 = 2.3625 fF

Cw = 0.2 fF

Thus,

C = 2 × 0.1125 + 2 × 0.3375 + 1 + 1 + 0.7875 + 2.3625 + 0.2 = 6.25 fF

Next we use Eqs. (14.51) and (14.52) to determine tPHL,

α_{n} = 2 / \left[\frac{7}{4}  –  \frac{3 V_{tn}}{V_{DD}} + \left(\frac{V_{tn}}{V_{DD}}\right)^{2} \right]           (14.51)

t_{PHL} = \frac{α_{p} }{k_{p}^{′}(W/L)_{p} V_{DD}}                              (14.52)

α_{n} = \frac{2}{\frac{7}{4}  –  \frac{3  ×  0.5}{2.5}  +  \left(\frac{0.5}{2.5}\right)^{2}} = 1.7

t_{PHL} = \frac{1.7  ×  6.25  ×  10^{−15}}{110  ×  10^{−6}   ×(0.375/0.25)  ×  2.5} = 25.8  ps

Similarly, we use Eqs. (14.53) and (14.54) to determine tPHL ,

α_{p} = 2 / \left[\frac{7}{4}  –  \frac{3 |V_{tp}|}{V_{DD}} + \left|\frac{V_{tp}}{V_{DD}}\right|^{2} \right]       (14.53)

tPHL = 0.69 RNC                            (14.54)

αp = 1.7

t_{PLH} = \frac{1.7  ×  6.25  ×  10^{−15}}{30  ×  10^{−6}   ×(1.125/0.25)  ×  2.5} = 31.5  ps

Finally, we determine tP as

t_{P} = \frac{1}{2} (25.8 + 31.5)  = 28.7  ps

Related Answered Questions

Question: 14.1

Verified Answer:

To obtain the PDN we use \overline{Y} = A +...