Question 14.2: For the simple MOS inverter in Fig. 14.12(a): (a) Derive exp...

For the simple MOS inverter in Fig. 14.12(a):

(a) Derive expressions for VOH, VOL, VIL , VIH , and VM. For simplicity, neglect channel-length modulation (i.e., assume λ = 0). Show that these inverter parameters can be expressed in terms of VDD, Vt , and (knRD). The latter parameter has the dimension of V-1, and to simplify the expressions, denote knRD ≡ 1/Vx .

(b) Show that Vx can be used as a design parameter for the inverter circuit. In particular, find the value of Vx that results in VM = VDD/2.

(c) Find numerical values for all parameters and for the inverter noise margins for VDD = 1.8 V, Vt = 0.5 V, and Vx set to the value found in (b).

(d) For k_{n}^{′} = 300 μA/V² and W/L = 1.5, find the required value of RD and use it to determine the average power dissipated in the inverter, assuming that the inverter spends half of the time in each of its two states.

(e) Comment on the characteristics of this inverter circuit vis-à-vis the ideal characteristics as well as on its suitability for implementation in integrated-circuit form.

Figure 14.12
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Refer to Fig. 14.20. For vI < Vt , the MOSFET is off, iD = 0, and vO = VDD. Thus

VOH = VDD                          (14.10)

As vI exceeds Vt , the MOSFET turns on and operates initially in the saturation region. Assuming λ = 0,

i_{D} = \frac{1}{2} k_{n} (v_{I}  –  V_{t})^{2}

and

v_{O} = V_{DD}  –  R_{D}i_{D} = V_{DD}  –  \frac{1}{2} k_{n} R_{D} (v_{I}  –  V_{t})^{2}

substituting knRD = 1/Vx , the BC segment of the VTC is described by

v_{O} = V_{DD}  –  \frac{1}{2  V_{x}}(v_{I}  –  V_{t})^{2}                (14.11)

To determine VIL , we differentiate Eq. (14.11) and set dvO/dvI = −1,

\frac{dv_{O}}{dv_{t}} = – \frac{1}{V_{x}} (v_{I}  –  V_{t})

-1 = – \frac{1}{V_{x}} (v_{IL}  –  V_{t})

which results in

VIL = Vt + Vx                                            (14.12)

To determine the coordinates of the midpoint M, we substitute vO = vI = VM in Eq. (14.11), thus obtaining

V_{DD}  –  V_{M} = \frac{1}{2  V_{x}} (V_{M}  –  V_{t})^{2}                                    (14.13)

which can be solved to obtain

V_{M} = V_{t} + \sqrt{2 (V_{DD}  –  V_{t}) V_{x} + V_{x}^{2}}  –  V_{x}                         (14.14)

The boundary of the saturation-region segment BC, point C, is determined by substituting vO = vI − Vt in Eq. (14.11) and solving for vO to obtain

V_{OC} = \sqrt{2  V_{DD} V_{x} + V_{x}^{2}}  –  V_{x}                        (14.15)

and

V_{IC} = V_{t} \sqrt{2  V_{DD} V_{x} + V_{x}^{2}}  –  V_{x}                                    (14.16)

Beyond point C, the transistor operates in the triode region, thus

i_{D} = k_{n} \left[(v_{I}  –  V_{t}) v_{O}  –  \frac{1}{2} v_{O}^{2}\right]

and the output voltage is obtained as

v_{O} = V_{DD}  –  \frac{1}{V_{x}}\left[(v_{I}  –  V_{t}) v_{O}  –  \frac{1}{2} v_{O}^{2}\right]                        (14.17)

which describes the segment CD of the VTC. To determine VIH , we differentiate Eq. (14.17) and set dvO/dvI = −1:

\frac{dv_{O}}{dv_{I}} = – \left(\frac{1}{V_{x}}\right) \left[(v_{I}  –  V_{t}) \frac{dv_{O}}{dv_{I}} + v_{O}  –  v_{O} \frac{dv_{O}}{dv_{I}}\right]

-1 = -\frac{1}{V_{x}} \left[-(v_{IH} – V_{t}) +2  v_{O} \right]

which results in

VIH − Vt = 2 vO − Vx                               (14.18)

Substituting in Eq. (14.17) for vI with the value of VIH from Eq. (14.18) results in an equation in the value of vO corresponding to vI = VIH, which can be solved to yield

v_{O} |_{v_{I} = V_{IH}} = 0.836 \sqrt{V_{DD} V_{x}}                                 (14.19)

which can be substituted in Eq. (14.18) to obtain

V_{IH} = V_{t} + 1.63 \sqrt{V_{DD} V_{x}}  –  V_{x}                        (14.20)

To determine VOL we substitute vI = VOH = VDD in Eq. (14.17):

V_{OL} = V_{DD}  –  \frac{1}{V_{x}} \left[(V_{DD}  –  V_{t})V_{OL}  –  \frac{1}{2} V_{OL}^{2}\right]                           (14.21)

Since we expect VOL to be much smaller than 2 (VDD − Vt), we can approximate Eq. (14.21) as

V_{OL} \simeq V_{DD}  –  \frac{1}{V_{x}}(V_{DD}  –  V_{t})V_{OL}

which results in

V_{OL} = \frac{V_{DD}}{1  +  [(V_{DD}  –  V_{t})/V_{x}]}                          (14.22)

It is interesting to note that the value of VOL can alternatively be found by noting that at point D, the MOSFET switch has a closure resistance rDS,

r_{DS} = \frac{1}{k_{n} (V_{DD}  –  V_{t})}                            (14.23)

and VOL can be obtained from the voltage divider formed by RD and rDS,

V_{OL} = V_{DD} \frac{r_{DS}}{R_{D}  +  r_{DS}} = \frac{V_{DD}}{1  +  R_{D} / r_{DS}}                             (14.24)

Substituting for rDS from Eq. (14.23) gives an expression for VOL identical to that in Eq. (14.22).

(b) We observe that all the inverter parameters derived above are functions of VDD, Vt , and Vx only. Since VDD and Vt are determined by the process technology, the only design parameter available is Vx ≡ 1/knRD. To place VM at half the supply voltage VDD, we substitute VM = VDD/2 in Eq. (14.13) to obtain the value Vx must have as

V_{x}|_{V_{M} = V_{DD} / 2} = \frac{(V_{DD} / 2  –  V_{t})^{2}}{V_{DD}}                              (14.25)

(c) For VDD = 1.8 V and Vt = 0.5, we use Eq. (14.25) to obtain

V_{x}|_{V_{M}  =  0.9  V} = \frac{(1.8 / 2  –  0.5)^{2}}{1.8} = 0.089  V

From Eq. (14.10):                  VOH = 1.8 V

From Eq. (14.22):                  VOL = 0.12 V

From Eq. (14.12):                  VIL = 0.59 V

From Eq. (14.20):                  VIH = 1.06 V

NML = VIL − VOL = 0.47 V

NMH = VOH − VIH  = 0.74 V

(d) To determine RD, we use

k_{n}R_{D} = \frac{1}{V_{x}} = \frac{1}{0.089} = 11.24

Thus,

R_{D} = \frac{11.24}{k_{n}^{′} (W/L)} = \frac{11.24}{300  ×  10^{−6} × 1.5} = 25  kΩ

The inverter dissipates power only when the output is low, in which case the current drawn from the supply is

I_{DD} = \frac{V_{DD}  –  V_{OL}}{R_{D}} = \frac{1.8  –  0.12}{25  kΩ} = 67  μA

and the power drawn from the supply during the low-output interval is

PD = VDDIDD = 1.8 × 67 = 121 μW

Since the inverter spends half of the time in this state,

P_{Daverage} = \frac{1}{2} P_{D} = 60.5  μW

(e) We now can make a few comments on the characteristics of this inverter circuit in comparison to the ideal characteristics:

1. The output signal swing, though not equal to the full power supply, is reasonably good: VOH = 1.8 V, VOL = 0.12 V.

2. The noise margins, though of reasonable values, are far from the optimum value of VDD/2. This is particularly the case for NML.

3. Most seriously, the gate dissipates a relatively large amount of power. To appreciate this point, consider an IC chip with a million inverters (a small number by today’s standards): Its power dissipation will be 61 W. This is too large, especially given that this is “static power,” unrelated to the switching activity of the gates (more on this later).

We consider this inverter implementation to be entirely unsuitable for IC fabrication because each inverter requires a load resistance of 25 kΩ, a value that needs a large chip area (see Appendix A). To overcome this problem, we investigate in Example 14.3 the replacement of the passive resistance RD with a PMOS transistor.

Figure 14.20

Related Answered Questions

Question: 14.1

Verified Answer:

To obtain the PDN we use \overline{Y} = A +...