Question 14.1: Consider a three-stage axial flow turbine where the total in......

Consider a three-stage axial flow turbine where the total inlet temperature is 1100 K, the flow coefficient is 0.8, and the mean rotational speed is constant for all stages and equal to 340 m/s.

Other data are given in the following table:

It is required to
1. Sketch the turbine shape.
2. Draw the velocity triangles at the mean sections for each stage (assume constant mean radius for all stages).
3. Calculate the degree of reaction at the mean section for the third stage.
4. Calculate the pressure ratio of each stage.
5. Prove that for equal pressure ratios of the three stages, the efficiencies must have the following relations:

ηs2ηs1=T01×ΔT02ΔT01×(T01ΔT01)ηs3ηs1=T01ΔT03ΔT01×(T01ΔT01ΔT02)\frac{\eta_{\text{s2}}}{\eta_{\text{s1}}} =\frac{T_{01}\times \Delta T_{02}}{\Delta T_{01}\times (T_{01}-\Delta T_{01})} \\ \frac{\eta_{\text{s3}}}{\eta_{\text{s1}}} =\frac{T_{01}\Delta T_{03}}{\Delta T_{01}\times (T_{01}-\Delta T_{01}-\Delta T_{02})}

Stage Angles Degree of
Reaction Λm\Lambda_{\text{m}}
Efficiency ηs\eta_{\text{s}} Inlet
Temperature (K)
Temperature
Drop [Δ T0\Delta \ T_0 (K)]
1 α1=0\alpha_1=0 0.5 0.938 1100 145
2 α1=β2\alpha_1=\beta_2 0.5 0.938 ? 145
3 α3=0\alpha_3=0 ? 0.94 ? 120
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

1. The sketch (Figure 14.14) illustrates the three-stage axial turbine having a constant mean radius.
2. To draw the velocity triangles, the angles (α2,α3,β2,β3\alpha_2,\alpha_3,\beta_2,\beta_3) must be calculated first.
The appropriate governing equations are the temperature drop and degree of reaction.

From Equations 14.9c and 14.32a,

ΔT0s=UCa(tanα2+tanα3)Cp=UCa(tanβ2+tanβ3)CP(14.9c)Λ=Ca2U(tanβ3tanβ2)(14.32a)tanβ3+tanβ2=CpΔT0UCa(1)tanβ3tanβ2=2Λϕ(2)\Delta T_{0\text{s}}=\frac{UC_{\text{a}}(\tan \alpha_2+\tan \alpha_3)}{C_{\text{p}}}=\frac{UC_{\text{a}}(\tan \beta_2+\tan \beta_3)}{C_{\text{P}}} \quad \quad \quad (14.9\text{c}) \\ \Lambda=\frac{C_{\text{a}}}{2U} (\tan \beta_3-\tan \beta_2) \quad \quad \quad (14.32\text{a}) \\ \tan \beta_3+\tan \beta_2=\frac{C_{\text{p}}\Delta T_0}{UC_{\text{a}}} \quad \quad \quad (1) \\ \tan \beta_3-\tan \beta_2=\frac{2\Lambda}{\phi} \quad \quad \quad (2)

Now solving these two equations simultaneously results in the angles β2 and β3\beta_2 \text{ and }\beta_3 .
For Stage (1)
Since T01=1100 K and ΔT0s=145 K,T03=955 KT_{01}=1100 \text{ K and }\Delta T_{0\text{s}}=145 \text{ K}, T_{03}=955 \text{ K}.
Also, as Λm=12,α2=β3,α3=β2\Lambda_{\text{m}}=\frac{1}{2} ,\alpha_2=\beta_3,\alpha_3=\beta_2

tanβ3+tanβ2=1148×145340×272=1.8(a)tanβ3tanβ2=2×0.50.8=1.25(b)\tan \beta_3+\tan \beta_2=\frac{1148 \times 145}{340 \times 272} =1.8 \quad \quad \quad (\text{a}) \\ \tan \beta_3-\tan \beta_2=\frac{2 \times 0.5}{0.8} =1.25 \quad \quad \quad \text{(b)}

Then β2=α3=15.376 and β3=α2=56.746\beta_2=\alpha_3=15.376^\circ \text{ and } \beta_3=\alpha_2=56.746^\circ

Stage (2)
The same results were obtained for stage (2) as both have the same temperature drop per stage, axial flow coefficient, and axial and rotational speeds.

β2=α3=15.376β3=α2=56.746\beta_2=\alpha_3=15.376^\circ \\ \beta_3=\alpha_2=56.746^\circ

Stage (3)
From Equation 14.9c,

tanα3+tanα2=CPΔT0sUCa\tan \alpha_3+\tan \alpha_2=\frac{C_{\text{P}}\Delta T_{0\text{s}}}{UC_{\text{a}}}

With

α3=0 and ΔT0s=120 Ktanα2=CPΔT0sUCaα2=56.125\alpha_3=0^\circ \text{ and } \Delta T_{0\text{s}}=120 \text{ K} \\ \therefore \tan \alpha_2=\frac{C_{\text{P}}\Delta T_{0\text{s}}}{UC_{\text{a}}} \\ \therefore \alpha_2=56.125^\circ

To calculate the angles β2 and β3\beta_2 \text{ and }\beta_3 , we again use Equations 1 and 2

tanβ3+tanβ2=1148×120340×272=1.4896\tan \beta_3+\tan \beta_2=\frac{1148 \times 120}{340 \times 272} =1.4896

Also

tanβ3tanβ2=2×0.40420.8=1.0105\tan \beta_3-\tan \beta_2=\frac{2 \times 0.4042}{0.8} =1.0105

Solving both equations, we get β2=13.471 and β3=51.341\beta_2=13.471^\circ \text{ and }\beta_3=51.341^\circ

Now, the velocity triangles can be drawn. Stages (1) and (2) have the same velocity triangle, while the third stage has zero exit swirl as shown in Figure 14.15.

3. The degree of reaction for the third stage can be calculated from Equation 14.32c, namely

Λ=1Ca2U(tanβ3tanα3)(14.32c)Λ=1ϕ2(tanα3tanα2)\Lambda=1-\frac{C_{\text{a}}}{2U} (\tan \beta_3-\tan \alpha_3) \quad \quad \quad (14.32\text{c}) \\ \Lambda=1-\frac{\phi}{2} (\tan \alpha_3-\tan \alpha_2)

With α3=0 and α2=56.125\alpha_3=0 \text{ and }\alpha_2=56.125^\circ

Λ = 0.4042

4. The pressure ratio of any stage is calculated from Equation 14.14a.

πs=P01P03=1(1(ΔT0s/ηsT01))γ/(γ1)(14.14)(P03P01)stage=[1ΔT0sηsT01]γ/(γ1)\pi_{\text{s}}=\frac{P_{01}}{P_{03}} =\frac{1}{(1-(\Delta T_{0\text{s}}/\eta_{\text{s}}T_{01}))^{\gamma/(\gamma-1)}} \quad \quad \quad (14.14) \\ \left(\frac{P_{03}}{P_{01}} \right) _{\text{stage}}=\left[1-\frac{\Delta T_{0\text{s}}}{\eta_{\text{s}}T_{01}} \right] ^{\gamma/(\gamma-1)}

Stage (1) 
With T01=1100 K and ΔT0s=145 K, then T03=955 KT_{01}=1100 \text{ K and }\Delta T_{0\text{s}}=145 \text{ K, then }T_{03}=955 \text{ K}

(P03P01)=[1145(0.938)×(1100)]1.33/0.33=0.5432\left(\frac{P_{03}}{P_{01}} \right) =\left[1-\frac{145}{(0.938) \times (1100)} \right] ^{1.33/0.33}=0.5432

Stage (2)
With T01=955 K and ΔT0=145 K, then T03=810 KT_{01}=955 \text{ K and } \Delta T_0=145 \text{ K, then }T_{03}=810 \text{ K}

(P03P01)=0.4935\left(\frac{P_{03}}{P_{01}} \right) =0.4935

Stage (3)
With T01=810 K and ΔT0=120 KT_{01}=810 \text{ K and }\Delta T_0=120 \text{ K}

(P03P01)=0.50097\left(\frac{P_{03}}{P_{01}} \right) =0.50097

5. Now to correlate the efficiencies of the first two stages to the temperature drop per stage, since

(P03P01)1=(P03P01)2(1ΔT01ηs1T01)γ/(γ1)=(1ΔT02ηs2(T01ΔT01))γ/(γ1)ΔT01ηs1T01=ΔT02ηs2(T01ΔT01)ηs2ηs1=T01ΔT02ΔT01(T01ΔT01)\left(\frac{P_{03}}{P_{01}} \right) _{1}=\left(\frac{P_{03}}{P_{01}} \right) _2 \\ \left(1-\frac{\Delta T_{01}}{\eta_{\text{s1}}T_{01}} \right) ^{\gamma/(\gamma-1)}=\left(1-\frac{\Delta T_{02}}{\eta_{\text{s2}}(T_{01}-\Delta T_{01})} \right) ^{\gamma/(\gamma-1)} \\ \frac{\Delta T_{01}}{\eta_{\text{s1}}T_{01}} =\frac{\Delta T_{02}}{\eta_{\text{s2}}(T_{01}-\Delta T_{01})} \\ \frac{\eta_{\text{s2}}}{\eta_{\text{s1}}} =\frac{T_{01}\Delta T_{02}}{\Delta T_{01}(T_{01}-\Delta T_{01})}

Similarly, assuming equal pressure ratios for all stages:

(P03P01)1=(P03P01)3(1ΔT01ηs1T01)γ/(γ1)=[1ΔT03ηs3(T01ΔT01ΔT02)]γ/(γ1)ΔT01ηs1T01=ΔT03ηs3(T01ΔT01ΔT02)ηs3ηs1=T01ΔT03ΔT01(T01ΔT01ΔT02)\therefore \left(\frac{P_{03}}{P_{01}} \right) _1=\left(\frac{P_{03}}{P_{01}} \right) _3 \\ \left(1-\frac{\Delta T_{01}}{\eta_{\text{s1}}T_{01}} \right) ^{\gamma/(\gamma-1)}=\left[1-\frac{\Delta T_{03}}{\eta_{\text{s3}}(T_{01}-\Delta T_{01}-\Delta T_{02})} \right] ^{\gamma/(\gamma-1)} \\ \therefore \frac{\Delta T_{01}}{\eta_{\text{s1}}T_{01}} =\frac{\Delta T_{03}}{\eta_{\text{s3}}(T_{01}-\Delta T_{01}-\Delta T_{02})} \\ \frac{\eta_{\text{s3}}}{\eta_{\text{s1}}} =\frac{T_{01}\Delta T_{03}}{\Delta T_{01}(T_{01}-\Delta T_{01}-\Delta T_{02})}

TABLE 14.3
Summary of results
Stages Parameters Stage 1 Stage 2 Stage 3
T01T_{01} 1100 955 810
α2\alpha_2 (degrees) 56.746 56.746 56.126
β3\beta_3 (degrees) 56.746 56.746 51.341
α3\alpha_3 (degrees) 15.376 15.376 0
β2\beta_2 (degrees) 15.376 15.376 13.471
Λm\Lambda_{\text{m}} 0.5 0.5 0.4042
P03/P01P_{03}/P_{01} 0.5432 0.4935 0.50097
14.14
14.15

Related Answered Questions