Holooly Plus Logo

Question 8.8: A spacecraft departs earth’s sphere of influence on November......

A spacecraft departs earth’s sphere of influence on November 7, 1996 (0 h UT), on a prograde coasting flight to Mars, arriving at Mars’ sphere of influence on September, 12, 1997 (0 h UT). Use Algorithm 8.2 to determine the trajectory and then compute the hyperbolic excess velocities at departure and arrival.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Step 1:
Algorithm 8.1 yields the state vectors for earth and Mars.

\begin{aligned}& R _{\text {earth }}=1.0499 \times 10^8 \hat{ I}+1.0465 \times 10^8 \hat{ J }+716.93 \hat{ K }  ( km ) \quad\left(R_{\text {earth }}=1.4824 \times 10^8  km \right) \\\\& V _{\text {earth }}=-21.515 \hat{I }+20.986 \hat{J }+0.00014376 \hat{ K }  ( km / s ) \quad\left(V_{\text {earth }}=30.055  km / s \right) \\\\& R _{\text {Mars }}=-2.0858 \times 10^7 \hat{I }-2.1842 \times 10^8 \hat{ J}-4.06244 \times 10^6 \hat{ K }  ( km ) \quad\left(R_{\text {Mars }}=2.1945 \times 10^8  km \right) \\\\& V _{\text {Mars }}=25.037 \hat{I }-0.22311 \hat{ J}-0.62018 \hat{ K }  ( km / s ) \quad\left(V_{\text {Mars }}=25.046  km / s \right)\end{aligned}

Step 2:
The position vector R_1 of the spacecraft at crossing the earth’s sphere of influence is just that of the earth,

R _1= R _{\text {earth }}=1.0499 \times 10^8 \hat{ I }+1.0465 \times 10^8 \hat{ J }+716.93 \hat{ K }  ( km )

On arrival at Mars’ sphere of influence, the spacecraft’s position vector is

R _2= R _{\text {Mars }}=-2.0858 \times 10^7 \hat{ I }-2.1842 \times 10^8 \hat{J }-4.06244 \times 10^6 \hat{ K }  ( km )

According to Eqns (5.47) and (5.48)

JD =J_0+\cfrac{ UT }{24}                       (5.47)

J_0=367 y-\operatorname{INT}\left\{\cfrac{7\left[y+\operatorname{INT}\left(\cfrac{m+9}{12}\right)\right]}{4}\right\}+\operatorname{INT}\left(\cfrac{275 m}{9}\right)+d+1,721,013.5                 (5.48)

\begin{aligned}& J D_{\text {Departure }}=2,450,394.5 \\& J D_{\text {Arrival }}=2,450,703.5\end{aligned}

Hence, the time of flight is

t_{12}=2,450,703.5-2,450,394.5=309  \text { days }

Entering R_1, R_2, and t_{12} into Algorithm 5.2 yields

\begin{aligned}& V _D^{(v)}=-24.429 \hat{ I }+21.782 \hat{ J }+0.94810 \hat{ K }  ( km / s ) \quad\left[V_D^{(v)}=32.743  km / s \right] \\\\& V _A^{(v)}=22.157 \hat{ I }-0.19959 \hat{J}-0.45793 \hat{ K }  ( km / s ) \quad\left[V_A^{(v)}=22.162  km / s \right] \end{aligned}

Using the state vector R_1,V^{(v)}_ D , we employ Algorithm 4.2 to find the orbital elements of the transfer trajectory.

\boxed{\begin{aligned}&  h=4.8456 \times 10^6  km ^2 / s \\& e=0.20581 \\& Ω=44.898^{\circ} \\& i=1.6622^{\circ} \\& \omega=19.973^{\circ} \\& \theta_1=340.04^{\circ} \\& a=1.8475 \times 10^8  km \end{aligned}}

Step 3:
At departure, the hyperbolic excess velocity is

\left. v _{\infty}\right)_{\text {Departure }}= V _D^{(v)}- V _{\text {earth }}=-2.9138 \hat{ I }+0.79525 \hat{J }+0.94796 \hat{ K }  ( km / s )

Therefore, the hyperbolic excess speed is

\left.\left. v _{\infty}\right)_{\text {Departure }}=\| v _{\infty}\right)_{\text {Departure }} \|=\boxed{3.1656  km / s}             (a)

Likewise, at arrival

\left. v _{\infty}\right)_{\text {Arrival }}= V _A^{(v)}- V _{\text {Mars }}=-2.8805 \hat{ I }+0.023514 \hat{J }+0.16254 \hat{ K }  ( km / s )

so that

\left.\left.v_{\infty}\right)_{\text {Arrival }}=\| v _{\infty}\right)_{\text {Arrival }} \|=\boxed{2.8852   km / s}                        (b)

Related Answered Questions

Question: 8.7

Verified Answer:

Step 1: According to Eqn (5.48), the Julian day nu...
Question: 8.2

Verified Answer:

From Tables A.1 and A.2 we have \begin{alig...
Question: 8.3

Verified Answer:

In Table A.1 we find \begin{aligned}m_{\tex...
Question: 8.1

Verified Answer:

In Table A.1 we find the orbital periods of earth ...