Holooly Plus Logo

Question 8.7: Find the distance between earth and Mars at 12 h UT on Augus......

Find the distance between earth and Mars at 12 h UT on August 27, 2003. Use Algorithm 8.1.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

Step 1:
According to Eqn (5.48), the Julian day number J_0 for midnight (0 h UT) of this date is

J_0=367 y-\operatorname{INT}\left\{\cfrac{7\left[y+\operatorname{INT}\left(\cfrac{m+9}{12}\right)\right]}{4}\right\}+\operatorname{INT}\left(\cfrac{275 m}{9}\right)+d+1,721,013.5                         (5.48)

 

\begin{aligned}J_0 & =367 \cdot 2003- INT \left\{\cfrac{7\left[2003+ INT \left(\frac{8+9}{12}\right)\right]}{4}\right\}+ INT \left(\cfrac{275 \cdot 8}{9}\right)+27+1,721,013.5 \\\\& =735,101-3507+244+27+1,721,013.5 \\\\& =2,452,878.5\end{aligned}

At UT = 12, the Julian day number is

J D=2,452,878.5+\cfrac{12}{24}=2,452,879.0

Step 2:
The number of Julian centuries between J2000 and this date is

T_0=\cfrac{J D-2,451,545}{36,525}=\cfrac{2,452,879-2,451,545}{36,525}=0.036523  Cy

Step 3:
Table 8.1 and Eqn (8.93b) yield the orbital elements of earth and Mars at 12 h UT on August 27, 2003.

Q=Q_0+\dot{Q} T_0                          (8.93b)

Table 1

Step 4:

\begin{aligned}& h_{\text {earth }}=4.4451 \times 10^9  km ^2 / s \\& h_{\text {Mars }}=5.4760 \times 10^9  km ^2 / s\end{aligned}

Step 5:

\begin{aligned}& \omega_{\text {earth }}=(\varpi-\Omega)_{\text {earth }}=102.95-0=102.95^{\circ} \\& \omega_{\text {Mars }}=(\varpi-\Omega)_{\text {Mars }}=336.07-49.549=286.52^{\circ} \\& M_{\text {earth }}=(L-\varpi)_{\text {earth }}=335.27-102.95=232.32^{\circ} \\& M_{\text {Mars }}=(L-\varpi)_{\text {Mars }}=334.51-336.07=-1.56^{\circ}\left(358.43^{\circ}\right)\end{aligned}

Step 6:

\begin{aligned}& E_{\text {earth }}-0.016710 \sin E_{\text {earth }}=232.32^{\circ}(\pi / 180) \Rightarrow E_{\text {earth }}=231.57^{\circ} \\& E_{\text {Mars }}-0.093397 \sin E_{\text {Mars }}=358.43^{\circ}(\pi / 180) \Rightarrow E_{\text {Mars }}=358.27^{\circ}\end{aligned}

Step 7:

\begin{aligned}& \theta_{\text {earth }}=2 \tan ^{-1}\left(\sqrt{\cfrac{1+0.016710}{1-0.016710}} \tan \cfrac{231.57^{\circ}}{2}\right)=-129.18^{\circ} \Rightarrow \theta_{\text {earth }}=230.82^{\circ} \\\\& \theta_{\text {Mars }}=2 \tan ^{-1}\left(\sqrt{\cfrac{1+0.093397}{1-0.093397}} \tan \cfrac{358.27^{\circ}}{2}\right)=-1.8998^{\circ} \Rightarrow \theta_{\text {Mars }}=358.10^{\circ}\end{aligned}

Step 8:
From Algorithm 4.5,

\begin{aligned}& R _{\text {earth }}=(135.59 \hat{ I }-66.803 \hat{J }-0.00056916 \hat{ K }) \times 10^6  ( km ) \\& V _{\text {earth }}=12.680 \hat{ I}+26.610 \hat{ J }-0.00022672 \hat{ K }  ( km / s ) \\& R _{\text {Mars }}=(185.95 \hat{ I}-89.959 \hat{ J }-6.4534 \hat{ K }) \times 10^6   ( km ) \\& V _{\text {Mars }}=11.478 \hat{I}+23.881 \hat{ J }+0.21828 \hat{ K }  ( km / s )\end{aligned}

The distance d between the two planets is therefore

d=\left\| R _{\text {Mars }}- R _{\text {earth }}\right\|

 

=\sqrt{(185.95-135.59)^2+[-89.959-(-66.803)]^2+(-6.4534-0.00056916)^2} \times 10^6

or

\boxed{d=55.80 \times 10^6  km}

The positions of earth and Mars are illustrated in Figure 8.26. It is a rare event for Mars to be in opposition (lined up with earth on the same side of the sun) when Mars is at or near perihelion. The two planets had not been this close in recorded history.

Table 8.1 Planetary Orbital Elements and Their Centennial Rates

\begin{aligned}& a( AU ) \\& \dot{a}( AU / Cy )\end{aligned} \begin{aligned}& e \\& \dot{e}(1 / C y)\end{aligned} \begin{aligned}& i\left({ }^{\circ}\right) \\& i\left({ }^{\circ} / Cy \right)\end{aligned} \begin{aligned}& \Omega\left({ }^{\circ}\right) \\& \dot{\Omega}\left({ }^{\circ} / Cy \right)\end{aligned} \begin{aligned}& \varpi\left(^{\circ}\right) \\& \dot{\varpi}\left({ }^{\circ} / Cy \right)\end{aligned} \begin{aligned}& L\left({ }^{\circ}\right) \\& \dot{L}\left({ }^{\circ} / Cy \right)\end{aligned}
Mercury 0.38709927 0.20563593 7.00497902 48.33076593 77.45779628 252.25032350
0.00000037 0.00001906 -0.00594749 -0.12534081 0.16047689 149472.67411175
Venus 0.72333566 0.00677672 3.39467605 76.67984255 131.6024672 181.97909950
0.00000390 -0.00004107 -0.0007889 -0.27769418 0.00268329 58517.81538729
Earth 1.00000261 0.01671123 -0.00001531 0.0 102.93768193 100.46457166
0.00000562 -0.00004392 -0.01294668 0.0 0.32327364 35999.37244981
Mars 1.52371034 0.09339410 1.84969142 49.55953891 23.94362959 -4.55343205
0.0001847 0.00007882 -0.00813131 -0.29257343 0.44441088 19140.30268499
Jupiter 5.20288700 0.04838624 1.30439695 100.47390909 14.72847983 34.39644501
-0.00011607 0.00013253 -0.00183714 0.20469106 0.21252668 3034.74612775
Satum 9.53667594 0.05386179 2.48599187 113.66242448 92.59887831 49.95424423
-0.00125060 -0.00050991 0.00193609 -0.28867794 -0.41897216 1222.49362201
Uranus 19.18916464 0.04725744 0.77263783 74.01692503 170.95427630 313.23810451
-0.00196176 -0.00004397 -0.00242939 0.04240589 0.40805281 428.48202785
Neptune 30.06992276 0.00859048 1.77004347 131.78422574 44.96476227 -55.12002969
0.00026291 0.00005105 0.00035372 -0.00508664 -0.32241464 218.45945325
(Pluto) 39.48211675 0.24882730 17.14001206 110.3039368 224.0689163 238.92903833
-0.00031596 0.00005170 0.00004818 -0.01183482 -0.04062942 145.20780515

Source: From Standish et al. (2013). Used with permission.

Table 1

a(km) e i\left({ }^{\circ}\right) \Omega \left({ }^{\circ}\right) \varpi\left({ }^{\circ}\right) L\left({ }^{\circ}\right)
Earth 1.4960 \times 10^8 0.016710 -0.00048816 0.0 102.95 335.27
Mars 2.2794 \times 10^8 0.093397 1.8494 49.549 336.07 334.51

 

8.26

Related Answered Questions

Question: 8.2

Verified Answer:

From Tables A.1 and A.2 we have \begin{alig...
Question: 8.3

Verified Answer:

In Table A.1 we find \begin{aligned}m_{\tex...
Question: 8.1

Verified Answer:

In Table A.1 we find the orbital periods of earth ...