Holooly Plus Logo

Question 8.4: A spacecraft is launched on a mission to Mars starting from ......

A spacecraft is launched on a mission to Mars starting from a 300 km circular parking orbit. Calculate (a) the delta-v required, (b) the location of perigee of the departure hyperbola, and (c) the amount of propellant required as a percentage of the spacecraft mass before the delta-v burn, assuming a specific impulse of 300 s.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

From Tables A.1 and A.2, we obtain the gravitational parameters for the sun and the earth,

\begin{aligned}& \mu_{\text {sun }}=1.327 \times 10^{11}  km ^3 / s ^2 \\& \mu_{\text {earth }}=398,600  km ^3 / s ^2\end{aligned}

and the orbital radii of the earth and Mars,

\begin{aligned}& R_{\text {earth }}=149.6 \times 10^6  km \\& R_{\text {Mars }}=227.9 \times 10^6  km\end{aligned}

(a) According to Eqn (8.35), the hyperbolic excess speed is

ν_{\infty}=\sqrt{\cfrac{\mu_{ sun }}{R_1}}\left(\sqrt{\cfrac{2 R_2}{R_1+R_2}}-1\right)                   (8.35)

ν_{\infty}=\sqrt{\cfrac{\mu_{\text {sun }}}{R_{\text {earth }}}}\left(\sqrt{\cfrac{2 R_{\text {Mars }}}{R_{\text {earth }}+R_{\text {Mars }}}}-1\right)=\sqrt{\frac{1.327 \times 10^{11}}{149.6 \times 10^6}}\left(\sqrt{\cfrac{2\left(227.9 \times 10^6\right)}{149.6 \times 10^6+227.9 \times 10^6}}-1\right)

from which

ν_{\infty}=2.943  km / s

The speed of the spacecraft in its 300 km circular parking orbit is given by Eqn (8.41),

ν_c=\sqrt{\cfrac{\mu_1}{r_p}}                         (8.41)

ν_c=\sqrt{\cfrac{\mu_{\text {earth }}}{r_{\text {earth }}+300}}=\sqrt{\cfrac{398,600}{6678}}=7.726  km / s

Finally, we use Eqn (8.42) to calculate the delta-v required to step up to the departure hyperbola.

\begin{gathered}\Delta ν=ν_p-ν_c=ν_c\left(\sqrt{\left.2+\left(\cfrac{ν_{\infty}}{ν_c}\right)^2-1\right)}=7.726\left(\sqrt{2+\left(\cfrac{2.943}{7.726}\right)^2-1}\right)\right. \\\\\boxed{\Delta ν=3.590  km / s}\end{gathered}

(b) Perigee of the departure hyperbola, relative to the earth’s orbital velocity vector, is found using Eqn (8.43),

\beta=\cos ^{-1}\left(\cfrac{1}{e}\right)=\cos ^{-1}\left(\cfrac{1}{1+\frac{r_p ν_{\infty}^2}{\mu_1}}\right)                        (8.43)

\begin{aligned}& \beta=\cos ^{-1}\left\lgroup \cfrac{1}{1+\frac{r_p ν_{\infty}^2}{\mu_{\text {earth }}}}\right\rgroup =\cos ^{-1}\left\lgroup\cfrac{1}{1+\frac{6678 \cdot 2.943^2}{368,600}}\right\rgroup \\\\&\boxed{ \beta=29.16^{\circ} }\end{aligned}

Figure 8.12 shows that the perigee can be located on either the sunlit or the dark side of the earth. It is likely that the parking orbit would be a prograde orbit (west to east), which would place the burnout point on the dark side.
(c) From Eqn (6.1), we have

\cfrac{\Delta m}{m}=1-e^{-\cfrac{\Delta ν}{I_{s p} g_o}}

Substituting \Delta ν=3.590  km / s , I_{s p}=300 s , \text { and } g _o=9.81 \times 10^{-3}  km / s ^2, this yields

\boxed{\cfrac{\Delta m}{m}=0.705}

That is, prior to the delta-v maneuver, over 70% of the spacecraft mass must be propellant.

Table A.1 Astronomical Data for the Sun, the Planets, and the Moon

\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline \text { Object } & \begin{array}{l}\text { Radius } \\\text { (km) }\end{array} & \text { Mass (kg) } & \begin{array}{l}\text { Sidereal } \\\text { Rotation } \\\text { Period }\end{array} & \begin{array}{l}\text { Inclination } \\\text { of Equator } \\\text { to Orbit } \\\text { Plane }\end{array} & \begin{array}{l}\text { Semimajor } \\\text { Axis of } \\\text { Orbit }( k m )\end{array} & \begin{array}{l}\text { Orbit } \\\text { Eccentricity }\end{array} & \begin{array}{l}\text { Inclination } \\\text { of Orbit } \\\text { to the } \\\text { Ecliptic } \\\text { Plane }\end{array} & \begin{array}{l}\text { Orbit } \\\text { Sidereal } \\\text { Period }\end{array} \\\hline \text { Sun } & 696,000 & 1.989 \times 10^{30} & 25.38  d & 7.25^{\circ} & – & – & – & – \\\hline \text { Mercury } & 2440 & 330.2 \times 10^{21} & 58.65  d & 0.01^{\circ} & 57.91 \times 10^6 & 0.2056 & 7.00^{\circ} & 87.97  d \\\hline \text { Venus } & 6052 & 4.869 \times 10^{24} & 243  d^* & 177.4^{\circ} & 108.2 \times 10^6 & 0.0067 & 3.39^{\circ} & 224.7  d \\\hline \text { Earth } & 6378 & 5.974 \times 10^{24} & 23.9345  h & 23.45^{\circ} & 149.6 \times 10^6 & 0.0167 & 0.00^{\circ} & 365.256  d \\\hline \text { (Moon) } & 1737 & 73.48 \times 10^{21} & 27.32  d & 6.68^{\circ} & 384.4 \times 10^3 & 0.0549 & 5.145^{\circ} & 27.322  d \\\hline \text { Mars } & 3396 & 641.9 \times 10^{21} & 24.62 h & 25.19^{\circ} & 227.9 \times 10^6 & 0.0935 & 1.850^{\circ} & 1.881  y \\\hline \text { Jupiter } & 71,490 & 1.899 \times 10^{27} & 9.925  h & 3.13^{\circ} & 778.6 \times 10^6 & 0.0489 & 1.304^{\circ} & 11.86  y \\\hline \text { Saturn } & 60,270 & 568.5 \times 10^{24} & 10.66  h & 26.73^{\circ} & 1.433 \times 10^9 & 0.0565 & 2.485^{\circ} & 29.46  y \\\hline \text { Uranus } & 25,560 & 86.83 \times 10^{24} & 17.24  h ^{\star} & 97.77^{\circ} & 2.872 \times 10^9 & 0.0457 & 0.772^{\circ} & 84.01  y \\\hline \text { Neptune } & 24,760 & 102.4 \times 10^{24} & 16.11  h & 28.32^{\circ} & 4.495 \times 10^9 & 0.0113 & 1.769 & 164.8  y \\\hline \text { (Pluto) } & 1195 & 12.5 \times 10^{21} & 6.387  d ^* & 122.5^{\circ} & 5.870 \times 10^9 & 0.2444 & 17.16^{\circ} & 247.7  y \\\hline\end{array}

*Retrograde

Table A.2 Gravitational Parameter (μ) and Sphere of Influence (SOI) Radius for the Sun, the Planets, and the Moon

Celestial Body \mu\left( km ^3 / s ^2\right) SOI Radius (km)
Sun 132,712,000,000
Mercury 22,030 112,000
Venus 324,900 616,000
Earth 398,600 925,000
Earth’s moon 4903 66,100
Mars 42,828 577,000
Jupiter 126,686,000 48,200,000
Saturn 37,931,000 54,800,000
Uranus 5,794,000 51,800,000
Neptune 6,835,100 86,600,000
Pluto 830 3,080,000
8.12

Related Answered Questions

Question: 8.7

Verified Answer:

Step 1: According to Eqn (5.48), the Julian day nu...
Question: 8.2

Verified Answer:

From Tables A.1 and A.2 we have \begin{alig...
Question: 8.3

Verified Answer:

In Table A.1 we find \begin{aligned}m_{\tex...
Question: 8.1

Verified Answer:

In Table A.1 we find the orbital periods of earth ...