Holooly Plus Logo

Question 8.5: After a Hohmann transfer from earth to Mars, calculate (a) t......

After a Hohmann transfer from earth to Mars, calculate
(a) the minimum delta-v required to place a spacecraft in orbit with a period of 7 h.
(b) the periapsis radius.
(c) the aiming radius.
(d) the angle between periapsis and Mars’ velocity vector.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The following data are required from Tables A.1 and A.2:

\begin{aligned}\mu_{\text {sun }} & =1.327 \times 10^{11}  km ^3 / s ^2 \\\mu_{\text {Mars }} & =42,830  km ^3 / s ^2 \\R_{\text {earth }} & =149.6 \times 10^6  km \\R_{\text {Mars }} & =227.9 \times 10^6  km \\r_{\text {Mars }} & =3396  km\end{aligned}

(a) The hyperbolic excess speed is found using Eqn (8.4),

\Delta V_A=V_2-V_A^{(ν)}=\sqrt{\cfrac{\mu_{\text {sun }}}{R_2}}\left(1-\sqrt{\cfrac{2 R_1}{R_1+R_2}}\right)                       (8.4)

\begin{aligned}& ν_{\infty}=\Delta V_A=\sqrt{\cfrac{\mu_{\text {sun }}}{R_{\text {Mars }}}}\left(1-\sqrt{\cfrac{2 R_{\text {earth }}}{R_{\text {earth }}+R_{\text {Mars }}}}\right)=\sqrt{\cfrac{1.327 \times 10^{11}}{227.9 \times 10^6}}\left(1-\sqrt{\cfrac{2 \cdot 149.6 \times 10^6}{149.6 \times 10^6+227.9 \times 10^6}}\right) \\\\& ν_{\infty}=2.648  km / s\end{aligned}

We can use Eqn (2.83) to express the semimajor axis a of the capture orbit in terms of its period T,

\boxed{T=\cfrac{2 \pi}{\sqrt{\mu}} a^{\frac{3}{2}}}                (2.83)

a=\left(\cfrac{T \sqrt{\mu_{ Mars }}}{2 \pi}\right)^{\frac{2}{3}}

Substituting T = 7.3600 s yields

a=\left(\cfrac{25,200 \sqrt{42,830}}{2 \pi}\right)^{\frac{2}{3}}=8832  km

From Eqn (2.73) we obtain

r_p=a(1-e)               (2.73)

a=\cfrac{r_p}{1-e}

On substituting the optimal periapsis radius, Eqn (8.67), this becomes

r_p=\cfrac{2 \mu_2}{ν_{\infty}^2} \cfrac{1-e}{1+e}                      (8.67)

a=\cfrac{2 \mu_{\text {Mars }}}{ν_{\infty}^2} \cfrac{1}{1+e}

from which

e=\cfrac{2 \mu_{\text {Mars }}}{a ν_{\infty}^2}-1=\cfrac{2 \cdot 42,830}{8832 \cdot 2.648^2}-1=0.3833

Thus, using Eqn (8.70), we find

\Delta ν=ν_{\infty} \sqrt{\cfrac{1-e}{2}}=2.648 \sqrt{\cfrac{1-0.3833}{2}}=1.470  km / s

(b) From Eqn (8.66), we obtain the periapse radius

\cfrac{ d ^2}{ d \xi^2} \cfrac{\Delta ν}{ν_{\infty}}=\cfrac{\sqrt{2}}{64} \cfrac{(1+e)^3}{(1-e)^{\frac{3}{2}}}                   (8.66)

r_p=\cfrac{2 \mu_{\text {Mars }}}{ν_{\infty}^2} \cfrac{1-e}{1+e}=\cfrac{2 \cdot 42,830}{2.648^2} \cfrac{1-0.3833}{1+0.3833}=\boxed{5447  km}

(c) The aiming radius is given by Eqn (8.71),

\Delta=2 \sqrt{2} \cfrac{\sqrt{1-e}}{1+e} \cfrac{\mu_2}{ν_{\infty}^2}=\sqrt{\cfrac{2}{1-e}} r_p                             (8.71)

\Delta=r_p \sqrt{\cfrac{2}{1-e}}=5447 \sqrt{\cfrac{2}{1-0.3833}}=\boxed{9809  km}

(d) Using Eqn (8.43), we get the angle to periapsis

\beta=\cos ^{-1}\left(\cfrac{1}{e}\right)=\cos ^{-1}\left(\cfrac{1}{1+\frac{r_p ν_{\infty}^2}{\mu_1}}\right)                         (8.43)

\beta=\cos ^{-1}\left(\cfrac{1}{1+\frac{r_p ν_{\infty}^2}{\mu_{\text {Mars }}}}\right)=\cos ^{-1}\left(\cfrac{1}{1+\frac{5447 \cdot 2.648^2}{42,830}}\right)=\boxed{58.09^{\circ}}

Mars, the approach hyperbola, and the capture orbit are shown to scale in Figure 8.17. The approach could also be made from the dark side of the planet instead of the sunlit side. The approach hyperbola and capture ellipse would be the mirror image of that shown, as is the case in Figure 8.12.

Table A.1 Astronomical Data for the Sun, the Planets, and the Moon

\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline \text { Object } & \begin{array}{l}\text { Radius } \\\text { (km) }\end{array} & \text { Mass (kg) } & \begin{array}{l}\text { Sidereal } \\\text { Rotation } \\\text { Period }\end{array} & \begin{array}{l}\text { Inclination } \\\text { of Equator } \\\text { to Orbit } \\\text { Plane }\end{array} & \begin{array}{l}\text { Semimajor } \\\text { Axis of } \\\text { Orbit }( k m )\end{array} & \begin{array}{l}\text { Orbit } \\\text { Eccentricity }\end{array} & \begin{array}{l}\text { Inclination } \\\text { of Orbit } \\\text { to the } \\\text { Ecliptic } \\\text { Plane }\end{array} & \begin{array}{l}\text { Orbit } \\\text { Sidereal } \\\text { Period }\end{array} \\\hline \text { Sun } & 696,000 & 1.989 \times 10^{30} & 25.38  d & 7.25^{\circ} & – & – & – & – \\\hline \text { Mercury } & 2440 & 330.2 \times 10^{21} & 58.65  d & 0.01^{\circ} & 57.91 \times 10^6 & 0.2056 & 7.00^{\circ} & 87.97  d \\\hline \text { Venus } & 6052 & 4.869 \times 10^{24} & 243  d^* & 177.4^{\circ} & 108.2 \times 10^6 & 0.0067 & 3.39^{\circ} & 224.7  d \\\hline \text { Earth } & 6378 & 5.974 \times 10^{24} & 23.9345  h & 23.45^{\circ} & 149.6 \times 10^6 & 0.0167 & 0.00^{\circ} & 365.256  d \\\hline \text { (Moon) } & 1737 & 73.48 \times 10^{21} & 27.32  d & 6.68^{\circ} & 384.4 \times 10^3 & 0.0549 & 5.145^{\circ} & 27.322  d \\\hline \text { Mars } & 3396 & 641.9 \times 10^{21} & 24.62 h & 25.19^{\circ} & 227.9 \times 10^6 & 0.0935 & 1.850^{\circ} & 1.881  y \\\hline \text { Jupiter } & 71,490 & 1.899 \times 10^{27} & 9.925  h & 3.13^{\circ} & 778.6 \times 10^6 & 0.0489 & 1.304^{\circ} & 11.86  y \\\hline \text { Saturn } & 60,270 & 568.5 \times 10^{24} & 10.66  h & 26.73^{\circ} & 1.433 \times 10^9 & 0.0565 & 2.485^{\circ} & 29.46  y \\\hline \text { Uranus } & 25,560 & 86.83 \times 10^{24} & 17.24  h ^{\star} & 97.77^{\circ} & 2.872 \times 10^9 & 0.0457 & 0.772^{\circ} & 84.01  y \\\hline \text { Neptune } & 24,760 & 102.4 \times 10^{24} & 16.11  h & 28.32^{\circ} & 4.495 \times 10^9 & 0.0113 & 1.769 & 164.8  y \\\hline \text { (Pluto) } & 1195 & 12.5 \times 10^{21} & 6.387  d ^* & 122.5^{\circ} & 5.870 \times 10^9 & 0.2444 & 17.16^{\circ} & 247.7  y \\\hline\end{array}

*Retrograde

Table A.2 Gravitational Parameter (μ) and Sphere of Influence (SOI) Radius for the Sun, the Planets, and the Moon

Celestial Body \mu\left( km ^3 / s ^2\right) SOI Radius (km)
Sun 132,712,000,000
Mercury 22,030 112,000
Venus 324,900 616,000
Earth 398,600 925,000
Earth’s moon 4903 66,100
Mars 42,828 577,000
Jupiter 126,686,000 48,200,000
Saturn 37,931,000 54,800,000
Uranus 5,794,000 51,800,000
Neptune 6,835,100 86,600,000
Pluto 830 3,080,000
8.17
8.12

Related Answered Questions

Question: 8.7

Verified Answer:

Step 1: According to Eqn (5.48), the Julian day nu...
Question: 8.2

Verified Answer:

From Tables A.1 and A.2 we have \begin{alig...
Question: 8.3

Verified Answer:

In Table A.1 we find \begin{aligned}m_{\tex...
Question: 8.1

Verified Answer:

In Table A.1 we find the orbital periods of earth ...