Holooly Plus Logo

Question 8.2: Calculate the minimum wait time for initiating a return trip......

Calculate the minimum wait time for initiating a return trip from Mars to earth.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

From Tables A.1 and A.2 we have

\begin{aligned}& R_{\text {earth }}=149.6 \times 10^6  km \\& R_{\text {Mars }}=227.9 \times 10^6  km \\& \mu_{\text {sun }}=132.71 \times 10^9  km ^3 / s ^2\end{aligned}

According to Eqn (8.11), the time of flight from earth to Mars is

t_{12}=\cfrac{\pi}{\sqrt{\mu_{\text {sun }}}}\left(\cfrac{R_1+R_2}{2}\right)^{\frac{3}{2}}                 (8.11)

\begin{aligned}t_{12} & =\cfrac{\pi}{\sqrt{\mu_{\text {sun }}}}\left(\cfrac{R_{\text {earth }}+R_{\text {Mars }}}{2}\right)^{\frac{3}{2}} \\\\& =\cfrac{\pi}{\sqrt{132.71 \times 10^9}}\left(\cfrac{149.6 \times 10^6+227.9 \times 10^6}{2}\right)^{\frac{3}{2}}=2.2362 \times 10^7 s\end{aligned}

or

t_{12}=258.82 \text { days }

From Eqn (3.9) and the orbital periods of earth and Mars (see Example 8.1 above) we obtain the mean motions of the earth and Mars.

n=\cfrac{2 \pi}{T}                       (3.9)

\begin{aligned}& n_{\text {earth }}=\cfrac{2 \pi}{365.26}=0.017202  rad / \text { day } \\\\& n_{\text {Mars }}=\cfrac{2 \pi}{687.99}=0.0091327  rad / \text { day }\end{aligned}

The phase angle between earth and Mars when the spacecraft reaches Mars is given by Eqn (8.13).

\phi_f=\pi-n_1 t_{12}                            (8.13)

\phi_f=\pi-n_{\text {earth }} t_{12}=\pi-0.017202 \cdot 258.82=-1.3107  ( rad )

Since n_{\text {earth }}>n_{\text {Mars }}, we choose Eqn (8.16) to find the wait time.

t_{\text {wait }}=\cfrac{-2 \phi_f-2 \pi N}{n_2-n_1} \quad\left(n_1>n_2\right)                     (8.16)

t_{\text {wait }}=\cfrac{-2 \phi_f-2 \pi N}{n_{\text {Mars }}-n_{\text {earth }}}=\cfrac{-2(-1.3107)-2 \pi N}{0.0091327-0.017202}=778.65 N-324.85 \text { (days) }

N = 0 yields a negative value, which we cannot accept. Setting N = 1, we get

\boxed{t_{\text {wait }}=453.8 \text { days }}

This is the minimum wait time. Obviously, we could set N = 2, 3, . to obtain longer wait times.

Table A.1 Astronomical Data for the Sun, the Planets, and the Moon

\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline \text { Object } & \begin{array}{l}\text { Radius } \\\text { (km) }\end{array} & \text { Mass (kg) } & \begin{array}{l}\text { Sidereal } \\\text { Rotation } \\\text { Period }\end{array} & \begin{array}{l}\text { Inclination } \\\text { of Equator } \\\text { to Orbit } \\\text { Plane }\end{array} & \begin{array}{l}\text { Semimajor } \\\text { Axis of } \\\text { Orbit }( k m )\end{array} & \begin{array}{l}\text { Orbit } \\\text { Eccentricity }\end{array} & \begin{array}{l}\text { Inclination } \\\text { of Orbit } \\\text { to the } \\\text { Ecliptic } \\\text { Plane }\end{array} & \begin{array}{l}\text { Orbit } \\\text { Sidereal } \\\text { Period }\end{array} \\\hline \text { Sun } & 696,000 & 1.989 \times 10^{30} & 25.38  d & 7.25^{\circ} & – & – & – & – \\\hline \text { Mercury } & 2440 & 330.2 \times 10^{21} & 58.65  d & 0.01^{\circ} & 57.91 \times 10^6 & 0.2056 & 7.00^{\circ} & 87.97  d \\\hline \text { Venus } & 6052 & 4.869 \times 10^{24} & 243  d^* & 177.4^{\circ} & 108.2 \times 10^6 & 0.0067 & 3.39^{\circ} & 224.7  d \\\hline \text { Earth } & 6378 & 5.974 \times 10^{24} & 23.9345  h & 23.45^{\circ} & 149.6 \times 10^6 & 0.0167 & 0.00^{\circ} & 365.256  d \\\hline \text { (Moon) } & 1737 & 73.48 \times 10^{21} & 27.32  d & 6.68^{\circ} & 384.4 \times 10^3 & 0.0549 & 5.145^{\circ} & 27.322  d \\\hline \text { Mars } & 3396 & 641.9 \times 10^{21} & 24.62 h & 25.19^{\circ} & 227.9 \times 10^6 & 0.0935 & 1.850^{\circ} & 1.881  y \\\hline \text { Jupiter } & 71,490 & 1.899 \times 10^{27} & 9.925  h & 3.13^{\circ} & 778.6 \times 10^6 & 0.0489 & 1.304^{\circ} & 11.86  y \\\hline \text { Saturn } & 60,270 & 568.5 \times 10^{24} & 10.66  h & 26.73^{\circ} & 1.433 \times 10^9 & 0.0565 & 2.485^{\circ} & 29.46  y \\\hline \text { Uranus } & 25,560 & 86.83 \times 10^{24} & 17.24  h ^{*} & 97.77^{\circ} & 2.872 \times 10^9 & 0.0457 & 0.772^{\circ} & 84.01  y \\\hline \text { Neptune } & 24,760 & 102.4 \times 10^{24} & 16.11  h & 28.32^{\circ} & 4.495 \times 10^9 & 0.0113 & 1.769 & 164.8  y \\\hline \text { (Pluto) } & 1195 & 12.5 \times 10^{21} & 6.387  d ^* & 122.5^{\circ} & 5.870 \times 10^9 & 0.2444 & 17.16^{\circ} & 247.7  y \\\hline\end{array}

*Retrograde

Table A.2 Gravitational Parameter (m) and Sphere of Influence (SOI) Radius for the Sun, the Planets, and the Moon

Celestial Body \mu\left( km ^3 / s ^2\right) SOI Radius (km)
Sun 132,712,000,000
Mercury 22,030 112,000
Venus 324,900 616,000
Earth 398,600 925,000
Earth’s moon 4903 66,100
Mars 42,828 577,000
Jupiter 126,686,000 48,200,000
Saturn 37,931,000 54,800,000
Uranus 5,794,000 51,800,000
Neptune 6,835,100 86,600,000
Pluto 830 3,080,000

Related Answered Questions

Question: 8.7

Verified Answer:

Step 1: According to Eqn (5.48), the Julian day nu...
Question: 8.3

Verified Answer:

In Table A.1 we find \begin{aligned}m_{\tex...
Question: 8.1

Verified Answer:

In Table A.1 we find the orbital periods of earth ...