Holooly Plus Logo

Question 8.10: In Example 8.8, calculate the delta-v required to place the ......

In Example 8.8, calculate the delta-v required to place the spacecraft in an elliptical capture orbit around Mars with a periapsis altitude of 300 km and a period of 48 h. Sketch the approach hyperbola.

Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

From Tables A.1 and A.2, we know that

\begin{aligned}& r_{\text {Mars }}=3380  km \\& \mu_{\text {Mars }}=42,830  km ^3 / s ^2\end{aligned}

The radius to periapsis of the arrival hyperbola is the radius of Mars plus the periapsis of the elliptical capture orbit,

r_p=3380+300=3680  km

According to Eqn (8.40) and Eqn (b) of Example 8.8, the speed of the spacecraft at periapsis of the arrival hyperbola is

ν_p=\cfrac{h}{r_p}=\sqrt{ν_{\infty}^2+\cfrac{2 \mu_1}{r_p}}                   (8.40)

\left.v_p\right)_{\text {hyp }}=\sqrt{\left.\left[v_{\infty}\right)_{\text {Arrival }}\right]^2+\cfrac{2 \mu_{\text {Mars }}}{r_p}}=\sqrt{2.8852^2+\cfrac{2 \cdot 42,830}{3680}}=5.621  km / s

To find the speed \left.v_p\right)_{ ell } at periapsis of the capture ellipse, we use the required period (48 h) to determine the ellipse’s semimajor axis, using Eqn (2.83),

\boxed{T=\cfrac{2 \pi}{\sqrt{\mu}}  a^{\frac{3}{2}}}                        (2.83)

a_{ ell }=\left(\cfrac{T \sqrt{\mu_{\text {Mars }}}}{2 \pi}\right)^{\frac{3}{2}}=\left(\cfrac{48 \cdot 3600 \cdot \sqrt{42,830}}{2 \pi}\right)^{\frac{3}{2}}=31,880  km

From Eqn (2.73), we obtain

r_p=a(1-e)                                   (2.73)

e_{\text {ell }}=1-\cfrac{r_p}{a_{\text {ell }}}=1-\cfrac{3680}{31,880}=0.8846

Then Eqn (8.59) yields

\left.ν_p\right)_{\text {capture }}=\sqrt{\cfrac{\mu_2(1+e)}{r_p}}                     (8.59)

\left.v_p\right)_{ ell }=\sqrt{\cfrac{\mu_{\text {Mars }}}{r_p}\left(1+e_{ ell }\right)}=\sqrt{\cfrac{42,830}{3680}(1+0.8846)}=4.683  km / s

Hence, the delta-v requirement is

\left.\left.\Delta v=v_p\right)_{\text {hyp }}-v_p\right)_{\text {ell }}=\boxed{0.9382  km / s}

The eccentricity of the approach hyperbola is given by Eqn (8.38),

e=1+\cfrac{r_p ν_{\infty}^2}{\mu_1}                  (8.38)

e=1+\cfrac{r_p v_{\infty}^2}{\mu_{\text {Mars }}}=1+\cfrac{3680 \cdot 2.8851^2}{42,830}=1.715

Assuming that the capture ellipse is a polar orbit of Mars, then the approach hyperbola is as illustrated in Figure 8.30. Note that Mars’ equatorial plane is inclined 25° to the plane of its orbit around the sun. Furthermore, the vernal equinox of Mars lies at an angle of 85° from that of the earth.

Table A.1 Astronomical Data for the Sun, the Planets, and the Moon

\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline \text { Object } & \begin{array}{l}\text { Radius } \\\text { (km) }\end{array} & \text { Mass (kg) } & \begin{array}{l}\text { Sidereal } \\\text { Rotation } \\\text { Period }\end{array} & \begin{array}{l}\text { Inclination } \\\text { of Equator } \\\text { to Orbit } \\\text { Plane }\end{array} & \begin{array}{l}\text { Semimajor } \\\text { Axis of } \\\text { Orbit }( k m )\end{array} & \begin{array}{l}\text { Orbit } \\\text { Eccentricity }\end{array} & \begin{array}{l}\text { Inclination } \\\text { of Orbit } \\\text { to the } \\\text { Ecliptic } \\\text { Plane }\end{array} & \begin{array}{l}\text { Orbit } \\\text { Sidereal } \\\text { Period }\end{array} \\\hline \text { Sun } & 696,000 & 1.989 \times 10^{30} & 25.38  d & 7.25^{\circ} & – & – & – & – \\\hline \text { Mercury } & 2440 & 330.2 \times 10^{21} & 58.65  d & 0.01^{\circ} & 57.91 \times 10^6 & 0.2056 & 7.00^{\circ} & 87.97  d \\\hline \text { Venus } & 6052 & 4.869 \times 10^{24} & 243  d^* & 177.4^{\circ} & 108.2 \times 10^6 & 0.0067 & 3.39^{\circ} & 224.7  d \\\hline \text { Earth } & 6378 & 5.974 \times 10^{24} & 23.9345  h & 23.45^{\circ} & 149.6 \times 10^6 & 0.0167 & 0.00^{\circ} & 365.256  d \\\hline \text { (Moon) } & 1737 & 73.48 \times 10^{21} & 27.32  d & 6.68^{\circ} & 384.4 \times 10^3 & 0.0549 & 5.145^{\circ} & 27.322  d \\\hline \text { Mars } & 3396 & 641.9 \times 10^{21} & 24.62 h & 25.19^{\circ} & 227.9 \times 10^6 & 0.0935 & 1.850^{\circ} & 1.881  y \\\hline \text { Jupiter } & 71,490 & 1.899 \times 10^{27} & 9.925  h & 3.13^{\circ} & 778.6 \times 10^6 & 0.0489 & 1.304^{\circ} & 11.86  y \\\hline \text { Saturn } & 60,270 & 568.5 \times 10^{24} & 10.66  h & 26.73^{\circ} & 1.433 \times 10^9 & 0.0565 & 2.485^{\circ} & 29.46  y \\\hline \text { Uranus } & 25,560 & 86.83 \times 10^{24} & 17.24  h ^{\star} & 97.77^{\circ} & 2.872 \times 10^9 & 0.0457 & 0.772^{\circ} & 84.01  y \\\hline \text { Neptune } & 24,760 & 102.4 \times 10^{24} & 16.11  h & 28.32^{\circ} & 4.495 \times 10^9 & 0.0113 & 1.769 & 164.8  y \\\hline \text { (Pluto) } & 1195 & 12.5 \times 10^{21} & 6.387  d ^* & 122.5^{\circ} & 5.870 \times 10^9 & 0.2444 & 17.16^{\circ} & 247.7  y \\\hline\end{array}

*Retrograde

Table A.2 Gravitational Parameter (m) and Sphere of Influence (SOI) Radius for the Sun, the Planets, and the Moon

Celestial Body \mu\left( km ^3 / s ^2\right) SOI Radius (km)
Sun 132,712,000,000
Mercury 22,030 112,000
Venus 324,900 616,000
Earth 398,600 925,000
Earth’s moon 4903 66,100
Mars 42,828 577,000
Jupiter 126,686,000 48,200,000
Saturn 37,931,000 54,800,000
Uranus 5,794,000 51,800,000
Neptune 6,835,100 86,600,000
Pluto 830 3,080,000
8.30

Related Answered Questions

Question: 8.7

Verified Answer:

Step 1: According to Eqn (5.48), the Julian day nu...
Question: 8.2

Verified Answer:

From Tables A.1 and A.2 we have \begin{alig...
Question: 8.3

Verified Answer:

In Table A.1 we find \begin{aligned}m_{\tex...
Question: 8.1

Verified Answer:

In Table A.1 we find the orbital periods of earth ...