Question 8.6: A spacecraft departs earth with a velocity perpendicular to ......

A spacecraft departs earth with a velocity perpendicular to the sun line on a flyby mission to Venus. Encounter occurs at a true anomaly in the approach trajectory of -30°. Periapsis altitude is to be 300 km.
(a) For an approach from the dark side of the planet, show that the postflyby orbit is as illustrated in Figure 8.20.
(b) For an approach from the sunlit side of the planet, show that the postflyby orbit is as illustrated in Figure 8.21.

8.20
8.21
Step-by-Step
The 'Blue Check Mark' means that this solution was answered by an expert.
Learn more on how do we answer questions.

The following data is found in Tables A.1 and A.2:

μsun =1.3271×1011 km3/s2μVenus =324,900 km3/s2Rearth =149.6×106 kmRVenus =108.2×106 kmrVenus =6052 km\begin{aligned}\mu_{\text {sun }} & =1.3271 \times 10^{11}  km ^3 / s ^2 \\\mu_{\text {Venus }} & =324,900  km ^3 / s ^2 \\R_{\text {earth }} & =149.6 \times 10^6  km \\R_{\text {Venus }} & =108.2 \times 10^6  km \\r_{\text {Venus }} & =6052  km\end{aligned}

Preflyby ellipse (orbit 1)
Evaluating the orbit formula, Eqn (2.45), at aphelion of orbit 1 yields

r=h2μ11+ecosθ\boxed{r=\cfrac{h^2}{\mu} \cfrac{1}{1+e \cos \theta}}                           (2.45)

Rearth =h12μsun 11e1R_{\text {earth }}=\cfrac{h_1^2}{\mu_{\text {sun }}} \cfrac{1}{1-e_1}

Thus,

h12=μsun Rearth (1e1)h_1^2=\mu_{\text {sun }} R_{\text {earth }}\left(1-e_1\right)                            (a)

At intercept,

RVenus =h12μsun 11+e1cos(θ1)R_{\text {Venus }}=\cfrac{h_1^2}{\mu_{\text {sun }}} \cfrac{1}{1+e_1 \cos \left(\theta_1\right)}

Substituting Eqn (a) and θ1=30\theta_1=-30^{\circ} and solving the resulting expression for e1e_1 leads to

e1=Rearth RVenus Rearth +RVenus cos(θ1)=149.6×106108.2×106149.6×106+108.2×106cos(30)=0.1702e_1=\cfrac{R_{\text {earth }}-R_{\text {Venus }}}{R_{\text {earth }}+R_{\text {Venus }} \cos \left(\theta_1\right)}=\cfrac{149.6 \times 10^6-108.2 \times 10^6}{149.6 \times 10^6+108.2 \times 10^6 \cos \left(-30^{\circ}\right)}=0.1702

With this result, Eqn (a) yields

h1=1.327×1011149.6×106(10.1702)=4.059×109 km2/sh_1=\sqrt{1.327 \times 10^{11} \cdot 149.6 \times 10^6(1-0.1702)}=4.059 \times 10^9  km ^2 / s

Now we can use Eqns (2.31) and (2.49) to calculate the radial and transverse components of the spacecraft’s heliocentric velocity at the inbound crossing of Venus’ sphere of influence.

h=rν\boxed{h=r ν_{\perp}}                            (2.31)

νr=μhesinθ\boxed{ν_r=\cfrac{\mu}{h} e \sin \theta}                             (2.49)

V1=h1RVenus =4.059×109108.2×106=37.51 km/sVr1=μsun h1e1sin(θ1)=1.327×10114.059×1090.1702sin(30)=2.782 km/s\begin{aligned}& V_{\perp_1}=\cfrac{h_1}{R_{\text {Venus }}}=\cfrac{4.059 \times 10^9}{108.2 \times 10^6}=37.51  km / s \\\\& V_{r_1}=\cfrac{\mu_{\text {sun }}}{h_1} e_1 \sin \left(\theta_1\right)=\cfrac{1.327 \times 10^{11}}{4.059 \times 10^9} \cdot 0.1702 \cdot \sin \left(-30^{\circ}\right)=-2.782  km / s\end{aligned}

The flight path angle, from Eqn (2.51), is

tanγ=νrν\tan \gamma=\cfrac{ν_r}{ν_{\perp}}                          (2.51)

γ1=tan1Vr1V1=tan1(2.78237.51)=4.241\gamma_1=\tan ^{-1} \cfrac{V_{r_1}}{V_{\perp_1}}=\tan ^{-1}\left(\cfrac{-2.782}{37.51}\right)=-4.241^{\circ}

The negative sign is consistent with the fact that the spacecraft is flying toward perihelion of the preflyby elliptical trajectory (orbit 1).
The speed of the space vehicle at the inbound crossing is

V1(v)=vn12+v12=(2.782)2+37.512=37.62 km/sV_1^{(v)}=\sqrt{v_{n_1}^2+v_{\perp_1}^2}=\sqrt{(-2.782)^2+37.51^2}=37.62  km / s                  (b)

Flyby hyperbola
From Eqns (8.75) and (8.77), we obtain

V1(ν)=[V1(ν)]Vu^V+[V1(ν)]Su^SV _1^{(ν)}=\left[V_1^{(ν)}\right]_V \hat{ u }_V+\left[V_1^{(ν)}\right]_S \hat{ u }_S                                               (8.75)

[V1(ν)]V=V1[V1(ν)]S=Vr1\left[V_1^{(ν)}\right]_V=V_{\perp_1}\left[V_1^{(ν)}\right]_S=-V_{r_1}                             (8.77)

V1(v)=37.51u^V+2.782u^S (km/s)V _1^{(v)}=37.51 \hat{u}_V+2.782 \hat{ u }_S  ( km / s )

The velocity of Venus in its presumed circular orbit around the sun is

V=μsun RVenus  u^V=1.327×1011108.2×106 u^V=35.02u^V (km/s)V =\sqrt{\cfrac{\mu_{\text {sun }}}{R_{\text {Venus }}}}  \hat{ u }_V=\sqrt{\cfrac{1.327 \times 10^{11}}{108.2 \times 10^6}}  \hat{ u }_V=35.02 \hat{ u }_V  ( km / s )                       (c)

Hence

v1=v1(v)V=(37.51u^V+2.782u^S)35.02u^V=2.490u^V+2.782u^S (km/s)v _{\infty_1}= v _1^{(v)}- V =\left(37.51 \hat{ u }_V+2.782 \hat{ u }_S\right)-35.02 \hat{ u }_V=2.490 \hat{ u }_V+2.782 \hat{ u }_S  ( km / s )                                    (d)

It follows that

v=V1V1=3.733 km/sv_{\infty}=\sqrt{ V _{\infty_1} \cdot V _{\infty_1}}=3.733  km / s

The periapsis radius is

rp=rVenus +300=6352 kmr_p=r_{\text {Venus }}+300=6352  km

Equations (8.38) and (8.39) are used to compute the angular momentum and eccentricity of the planetocentric hyperbola.

e=1+rpν2μ1e=1+\cfrac{r_p ν_{\infty}^2}{\mu_1}                              (8.38)

 

h=rpν2+2μ1rph=r_p \sqrt{ν_{\infty}^2+\cfrac{2 \mu_1}{r_p}}                               (8.39)

 

h=6352v2+2μVenus 6352=63523.7332+2324,9006352=68,480 km2/se=1+rpv2μVenus =1+63523.7332324,900=1.272\begin{aligned}& h=6352 \sqrt{v_{\infty}^2+\cfrac{2 \mu_{\text {Venus }}}{6352}}=6352 \sqrt{3.733^2+\cfrac{2 \cdot 324,900}{6352}}=68,480  km ^2 / s \\\\& e=1+\cfrac{r_p v_{\infty}^2}{\mu_{\text {Venus }}}=1+\cfrac{6352 \cdot 3.733^2}{324,900}=1.272\end{aligned}

The turn angle and true anomaly of the asymptote are

δ=2sin1(1e)=2sin1(11.272)=103.6θ=cos1(1e)=cos1(11.272)=141.8\begin{aligned}& \delta=2 \sin ^{-1}\left(\cfrac{1}{e}\right)=2 \sin ^{-1}\left(\cfrac{1}{1.272}\right)=103.6^{\circ} \\\\& \theta_{\infty}=\cos ^{-1}\left(-\cfrac{1}{e}\right)=\cos ^{-1}\left(-\cfrac{1}{1.272}\right)=141.8^{\circ}\end{aligned}

From Eqns (2.50), (2.103), and (2.107), the aiming radius is

rp=h2μ11+er_p=\cfrac{h^2}{\mu} \cfrac{1}{1+e}                           (2.50)

a=h2μ1e21a=\cfrac{h^2}{\mu} \cfrac{1}{e^2-1}                            (2.103)

Δ=ae21\Delta=a \sqrt{e^2-1}                                   (2.107)

Δ=rpe+1e1=63521.272+11.2721=18,340 km\Delta=r_p \sqrt{\cfrac{e+1}{e-1}}=6352 \sqrt{\cfrac{1.272+1}{1.272-1}}=18,340  km                            (e)

Finally, from Eqn (d) we obtain the angle between v1 and Vv _{\infty_1} \text { and } V \text {, }

ϕ1=tan12.7822.490=48.17\phi_1=\tan ^{-1} \cfrac{2.782}{2.490}=48.17^{\circ}                  (f)

There are two flyby approaches, as shown in Figure 8.22. In the dark side approach, the turn angle is counterclockwise (+102.9°), whereas for the sunlit side approach, it is clockwise (-102.9°).
Dark side approach
According to Eqn (8.85), the angle between v and VVenus v _{\infty} \text { and } V _{\text {Venus }} at the outbound crossing is

ϕ2=ϕ1+δ=48.17+103.6=151.8\phi_2=\phi_1+\delta=48.17^{\circ}+103.6^{\circ}=151.8^{\circ}

Hence, by Eqn (8.86),

v2=νcosϕ2u^V+νsinϕ2u^Sv _{\infty_2}=ν_{\infty} \cos \phi_2 \hat{ u }_V+ν_{\infty} \sin \phi_2 \hat{ u }_S                               (8.86)

v2=3.733(cos151.8u^V+sin151.8u^S)=3.289u^V+1.766u^S (km/s)v _{\infty_2}=3.733\left(\cos 151.8^{\circ} \hat{ u }_V+\sin 151.8^{\circ} \hat{ u }_S\right)=-3.289 \hat{ u }_V+1.766 \hat{ u }_S  ( km / s )

Using this and Eqn (c) above, we compute the spacecraft’s heliocentric velocity at the outbound crossing.

V2(v)=V+v2=31.73u^V+1.766u^S (km/s)V _2^{(v)}= V + v _{\infty_2}=31.73 \hat{ u }_V+1.766 \hat{ u }_S  ( km / s )

It follows from Eqn (8.89) that

V2=[V2(ν)]VVr2=[V2(ν)]SV_{\perp_2}=\left[V_2^{(ν)}\right]_V \quad V_{r_2}=-\left[V_2^{(ν)}\right]_S                              (8.89)

V2=31.73 km/sVr2=1.766 km/sV_{\perp_2}=31.73  km / s \quad V_{r_2}=-1.766  km / s                         (g)

The speed of the spacecraft at the outbound crossing is

v2(v)=vt22+v22=(1.766)2+31.732=31.78 km/sv_2^{(v)}=\sqrt{v_{t_2}^2+v_{\perp_2}^2}=\sqrt{(-1.766)^2+31.73^2}=31.78  km / s

This is 5.83 km/s less than the inbound speed.
Postflyby ellipse (orbit 2) for the dark side approach
For the heliocentric postflyby trajectory, labeled orbit 2 in Figure 8.20, the angular momentum is found using Eqn (8.90)

h2=RV2h_2=R V_{\perp_2}                             (8.90)

h2=RVenus V2=(108.2×106)31.73=3.434×109 (km2/s)h_2=R_{\text {Venus }} V_{\perp_2}=\left(108.2 \times 10^6\right) \cdot 31.73=3.434 \times 10^9  \left( km ^2 / s \right)                                       (h)

From Eqn (8.91),

R=h22μsun 11+e2cosθ2R=\cfrac{h_2^2}{\mu_{\text {sun }}} \cfrac{1}{1+e_2 \cos \theta_2}                                (8.91)

ecosθ2=h22μsun RVenus 1=(3.434×106)21.327×1011108.2×1061=0.1790e \cos \theta_2=\cfrac{h_2^2}{\mu_{\text {sun }} R_{\text {Venus }}}-1=\cfrac{\left(3.434 \times 10^6\right)^2}{1.327 \times 10^{11} \cdot 108.2 \times 10^6}-1=-0.1790                      (i)

and from Eqn (8.92)

Vr2=μsun h2e2sinθ2V_{r_2}=\cfrac{\mu_{\text {sun }}}{h_2} e_2 \sin \theta_2                            (8.92)

esinθ2=Vr2h2μsun =1.7663.434×1091.327×1011=0.04569e \sin \theta_2=\cfrac{V_{r_2} h_2}{\mu_{\text {sun }}}=\cfrac{-1.766 \cdot 3.434 \times 10^9}{1.327 \times 10^{11}}=-0.04569                                           (j)

Thus

tanθ2=esinθ2ecosθ2=0.045,690.1790=0.2553\tan \theta_2=\cfrac{e \sin \theta_2}{e \cos \theta_2}=\cfrac{-0.045,69}{-0.1790}=0.2553                            (k)

which means

θ2=14.32 or 194.32\theta_2=14.32^{\circ} \text { or } 194.32^{\circ}                     (l)

But θ2\theta_2 must lie in the third quadrant since, according to Eqns (i) and (j), both the sine and cosine are negative.
Hence,

θ2=194.32\theta_2=194.32^{\circ}                               (m)

With this value of θ2\theta_2, we can use either Eqn (i) or Eqn (j) to calculate the eccentricity,

e2=0.1847e_2=0.1847                                 (n)

Perihelion of the departure orbit lies 194.32° clockwise from the encounter point (so that aphelion is 14.32° therefrom), as illustrated in Figure 8.20. The perihelion radius is given by Eqn (2.50),

Rperihelion =h22μsun 11+e2=(3.434×109)21.327×101111+0.1847=74.98×106 kmR_{\text {perihelion }}=\cfrac{h_2^2}{\mu_{\text {sun }}} \cfrac{1}{1+e_2}=\cfrac{\left(3.434 \times 10^9\right)^2}{1.327 \times 10^{11}} \cfrac{1}{1+0.1847}=74.98 \times 10^6  km

which is well within the orbit of Venus.
Sunlit side approach
In this case, the angle between v and VVenus v _{\infty} \text { and } V _{\text {Venus }} at the outbound crossing is

ϕ2=ϕ1δ=48.17103.6=55.44\phi_2=\phi_1-\delta=48.17^{\circ}-103.6^{\circ}=-55.44^{\circ}

Therefore,

v2=3.733[cos(55.44)u^V+sin(55.44)u^S]=2.118u^V3.074u^S (km/s)v _{\infty_2}=3.733\left[\cos \left(-55.44^{\circ}\right) \hat{ u }_V+\sin \left(-55.44^{\circ}\right) \hat{ u }_S\right]=2.118 \hat{ u }_V-3.074 \hat{ u }_S  ( km / s )

The spacecraft’s heliocentric velocity at the outbound crossing is

V2(v)=VVenus +v2=37.14u^V3.074u^S (km/s)V _2^{(v)}= V _{\text {Venus }}+ v _{\infty_2}=37.14 \hat{ u }_V-3.074 \hat{ u }_S  ( km / s )

which means

V2=37.14 km/sVr2=3.074 km/sV_{\perp_2}=37.14  km / s \quad V_{r_2}=3.074  km / s

The speed of the spacecraft at the outbound crossing is

V2(v)=3.0742+v22=3.0502+37.142=37.27 km/sV_2^{(v)}=\sqrt{3.074^2+v_{\perp 2}^2}=\sqrt{3.050^2+37.14^2}=37.27  km / s

This speed is just 0.348 km/s less than inbound crossing speed. The relatively small speed change is due to the fact that the apse line of this hyperbola is nearly perpendicular to Venus’ orbital track, as shown in Figure 8.23.
Nevertheless, the periapses of both hyperbolas are on the leading side of the planet.

Postflyby ellipse (orbit 2) for the sunlit side approach To determine the heliocentric postflyby trajectory, labeled orbit2in Figure 8.21, werepeat Steps (h) through (n) above.

h2=RVenus V2=(108.2×106)37.14=4.019×109(km2/s)ecosθ2=h22μsun RVenus 1=(4.019×109)21.327×1011108.2×1061=0.1246(o)esinθ2=Vr2h2μsun =3.0744.019×1091.327×1011=0.09309(p)tanθ2=esinθ2ecosθ2=0.093090.1246=0.7469θ2=36.08 or 216.08\begin{aligned}h_2 & =R_{\text {Venus }} V_{\perp_2}=\left(108.2 \times 10^6\right) \cdot 37.14=4.019 \times 10^9\left( km ^2 / s \right) \\\\e \cos \theta_2 & =\frac{h_2^2}{\mu_{\text {sun }} R_{\text {Venus }}}-1=\frac{\left(4.019 \times 10^9\right)^2}{1.327 \times 10^{11} \cdot 108.2 \times 10^6}-1=0.1246&(o) \\\\e \sin \theta_2 & =\frac{V_{r_2} h_2}{\mu_{\text {sun }}}=\frac{3.074 \cdot 4.019 \times 10^9}{1.327 \times 10^{11}}=0.09309&(p) \\\\\tan \theta_2 & =\frac{e \sin \theta_2}{e \cos \theta_2}=\frac{0.09309}{0.1246}=0.7469 \\\\\theta_2 & =36.08^{\circ} \text { or } 216.08^{\circ}\end{aligned}

θ2\theta_2 must lie in the first quadrant since both the sine and cosine are positive. Hence,

θ2=36.76\theta_2=36.76^{\circ}                       (q)

With this value of θ2\theta_2, we can use either Eqn (o) or Eqn (p) to calculate the eccentricity,

e2=0.1556e_2=0.1556

Perihelion of the departure orbit lies 36.76° clockwise from the encounter point as illustrated in Figure 8.21. The perihelion radius is

Rperihelion =h22μsun 11+e2=(4.019×109)21.327×101111+0.1556=105.3×106 kmR_{\text {perihelion }}=\cfrac{h_2^2}{\mu_{\text {sun }}} \cfrac{1}{1+e_2}=\cfrac{\left(4.019 \times 10^9\right)^2}{1.327 \times 10^{11}} \cfrac{1}{1+0.1556}=105.3 \times 10^6  km

which is just within the orbit of Venus. Aphelion lies between the orbits of earth and Venus.

Table A.1 Astronomical Data for the Sun, the Planets, and the Moon

 Object  Radius  (km)  Mass (kg)  Sidereal  Rotation  Period  Inclination  of Equator  to Orbit  Plane  Semimajor  Axis of  Orbit (km) Orbit  Eccentricity  Inclination  of Orbit  to the  Ecliptic  Plane  Orbit  Sidereal  Period  Sun 696,0001.989×103025.38 d7.25 Mercury 2440330.2×102158.65 d0.0157.91×1060.20567.0087.97 d Venus 60524.869×1024243 d177.4108.2×1060.00673.39224.7 d Earth 63785.974×102423.9345 h23.45149.6×1060.01670.00365.256 d (Moon) 173773.48×102127.32 d6.68384.4×1030.05495.14527.322 d Mars 3396641.9×102124.62h25.19227.9×1060.09351.8501.881 y Jupiter 71,4901.899×10279.925 h3.13778.6×1060.04891.30411.86 y Saturn 60,270568.5×102410.66 h26.731.433×1090.05652.48529.46 y Uranus 25,56086.83×102417.24 h97.772.872×1090.04570.77284.01 y Neptune 24,760102.4×102416.11 h28.324.495×1090.01131.769164.8 y (Pluto) 119512.5×10216.387 d122.55.870×1090.244417.16247.7 y\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline \text { Object } & \begin{array}{l}\text { Radius } \\\text { (km) }\end{array} & \text { Mass (kg) } & \begin{array}{l}\text { Sidereal } \\\text { Rotation } \\\text { Period }\end{array} & \begin{array}{l}\text { Inclination } \\\text { of Equator } \\\text { to Orbit } \\\text { Plane }\end{array} & \begin{array}{l}\text { Semimajor } \\\text { Axis of } \\\text { Orbit }( k m )\end{array} & \begin{array}{l}\text { Orbit } \\\text { Eccentricity }\end{array} & \begin{array}{l}\text { Inclination } \\\text { of Orbit } \\\text { to the } \\\text { Ecliptic } \\\text { Plane }\end{array} & \begin{array}{l}\text { Orbit } \\\text { Sidereal } \\\text { Period }\end{array} \\\hline \text { Sun } & 696,000 & 1.989 \times 10^{30} & 25.38  d & 7.25^{\circ} & – & – & – & – \\\hline \text { Mercury } & 2440 & 330.2 \times 10^{21} & 58.65  d & 0.01^{\circ} & 57.91 \times 10^6 & 0.2056 & 7.00^{\circ} & 87.97  d \\\hline \text { Venus } & 6052 & 4.869 \times 10^{24} & 243  d^* & 177.4^{\circ} & 108.2 \times 10^6 & 0.0067 & 3.39^{\circ} & 224.7  d \\\hline \text { Earth } & 6378 & 5.974 \times 10^{24} & 23.9345  h & 23.45^{\circ} & 149.6 \times 10^6 & 0.0167 & 0.00^{\circ} & 365.256  d \\\hline \text { (Moon) } & 1737 & 73.48 \times 10^{21} & 27.32  d & 6.68^{\circ} & 384.4 \times 10^3 & 0.0549 & 5.145^{\circ} & 27.322  d \\\hline \text { Mars } & 3396 & 641.9 \times 10^{21} & 24.62 h & 25.19^{\circ} & 227.9 \times 10^6 & 0.0935 & 1.850^{\circ} & 1.881  y \\\hline \text { Jupiter } & 71,490 & 1.899 \times 10^{27} & 9.925  h & 3.13^{\circ} & 778.6 \times 10^6 & 0.0489 & 1.304^{\circ} & 11.86  y \\\hline \text { Saturn } & 60,270 & 568.5 \times 10^{24} & 10.66  h & 26.73^{\circ} & 1.433 \times 10^9 & 0.0565 & 2.485^{\circ} & 29.46  y \\\hline \text { Uranus } & 25,560 & 86.83 \times 10^{24} & 17.24  h ^{\star} & 97.77^{\circ} & 2.872 \times 10^9 & 0.0457 & 0.772^{\circ} & 84.01  y \\\hline \text { Neptune } & 24,760 & 102.4 \times 10^{24} & 16.11  h & 28.32^{\circ} & 4.495 \times 10^9 & 0.0113 & 1.769 & 164.8  y \\\hline \text { (Pluto) } & 1195 & 12.5 \times 10^{21} & 6.387  d ^* & 122.5^{\circ} & 5.870 \times 10^9 & 0.2444 & 17.16^{\circ} & 247.7  y \\\hline\end{array}

*Retrograde

Table A.2 Gravitational Parameter (μ) and Sphere of Influence (SOI) Radius for the Sun, the Planets, and the Moon

Celestial Body μ(km3/s2)\mu\left( km ^3 / s ^2\right) SOI Radius (km)
Sun 132,712,000,000
Mercury 22,030 112,000
Venus 324,900 616,000
Earth 398,600 925,000
Earth’s moon 4903 66,100
Mars 42,828 577,000
Jupiter 126,686,000 48,200,000
Saturn 37,931,000 54,800,000
Uranus 5,794,000 51,800,000
Neptune 6,835,100 86,600,000
Pluto 830 3,080,000
8.22
8.23

Related Answered Questions

Question: 8.7

Verified Answer:

Step 1: According to Eqn (5.48), the Julian day nu...
Question: 8.2

Verified Answer:

From Tables A.1 and A.2 we have \begin{alig...
Question: 8.3

Verified Answer:

In Table A.1 we find \begin{aligned}m_{\tex...
Question: 8.1

Verified Answer:

In Table A.1 we find the orbital periods of earth ...