Question 10.6: Calculate Cox, C min′ , and C FB′ for a MOS capacitor. Consi...

Calculate C_{o x}, C_{\min }^{\prime}, and C_{F B}^{\prime} for a MOS capacitor.

Consider a p-type silicon substrate at T=300 \mathrm{~K} doped to N_{a}=10^{16} \mathrm{~cm}^{-3}.

The oxide is silicon dioxide with a thickness of t_{o x}=18 \mathrm{~nm}=180 \mathring{A} , and the gate is aluminum.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The oxide capacitance is

C_{o x}=\frac{\epsilon_{o x}}{t_{o x}}=\frac{(3.9)\left(8.85 \times 10^{-14}\right)}{180 \times 10^{-8}}=1.9175 \times 10^{-7} \mathrm{~F} / \mathrm{cm}^{2}

To find the minimum capacitance, we need to calculate

\phi_{f p}=V_{t} \ln \left(\frac{N_{a}}{n_{i}}\right)=(0.0259) \ln \left(\frac{10^{16}}{1.5 \times 10^{10}}\right)=0.3473 \mathrm{~V}

and

\begin{aligned}x_{d T} &=\left\{\frac{4 \epsilon_{s} \phi_{f f}}{e N_{a}}\right\}^{1 / 2}=\left\{\frac{4(11.7)\left(8.85 \times 10^{-14}\right)(0.3473)}{\left(1.6 \times 10^{-19}\right)\left(10^{16}\right)}\right\}^{1 / 2} \\ & \cong 0.30 \times 10^{-4} \mathrm{~cm}\end{aligned}

Then

\begin{aligned} C_{\text {min }}^{\prime} &=\frac{\epsilon_{o x}}{t_{o x}+\left(\frac{\epsilon_{o x}}{\epsilon_{s}}\right) x_{d T}}=\frac{(3.9)\left(8.85 \times 10^{-14}\right)}{180 \times 10^{-8}+\left(\frac{3.9}{11.7}\right)\left(0.30 \times 10^{-4}\right)} \\ &=2.925 \times 10^{-8} \mathrm{~F} / \mathrm{cm}^{2} \end{aligned}

We may note that

\frac{C_{\min }^{\prime}}{C_{o x}}=\frac{2.925 \times 10^{-8}}{1.9175 \times 10^{-7}}=0.1525

The flat-band capacitance is

\begin{aligned}C_{F B}^{\prime} &=\frac{\epsilon_{o x}}{t_{o x}+\left(\frac{\epsilon_{o x}}{\epsilon_{s}}\right) \sqrt{\frac{V_{t} \epsilon_{s}}{e N_{a}}}} \\ &=\frac{(3.9)\left(8.85 \times 10^{-14}\right)}{180 \times 10^{-8}+\left(\frac{3.9}{11.7}\right) \sqrt{\frac{(0.0259)(11.7)\left(8.85 \times 10^{-14}\right)}{\left(1.6 \times 10^{-19}\right)\left(10^{16}\right)}}} \\ &=1.091 \times 10^{-7} \mathrm{~F} / \mathrm{cm}^{2} \end{aligned}

We also note that

\frac{C_{F B}^{\prime}}{C_{o x}}=\frac{1.091 \times 10^{-7}}{1.9175 \times 10^{-7}}=0.569

Comment

The ratios of C_{\min }^{\prime} / C_{o x} and C_{F B}^{\prime} / C_{o x} are typical values obtained in C-V plots.

Related Answered Questions