Question 10.9: Calculate the body-effect coefficient and the change in the ...

Calculate the body-effect coefficient and the change in the threshold voltage due to an applied source-to-body voltage.

Consider an n-channel silicon MOSFET at T=300 \mathrm{~K}. Assume the substrate is doped to N_{a}=3 \times 10^{16} \mathrm{~cm}^{-3} and assume the oxide is silicon dioxide with a thickness of t_{o x}=20 \mathrm{~nm}=200 \mathring{A} . Let V_{S B}=1 \mathrm{~V}.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We can calculate that

\phi_{f p}=V_{t} \ln \left(\frac{N_{a}}{n_{i}}\right)=(0.0259) \ln \left(\frac{3 \times 10^{16}}{1.5 \times 10^{10}}\right)=0.3758 \mathrm{~V}

and

C_{o x}=\frac{\boldsymbol{\epsilon}_{o x}}{t_{o x}}=\frac{(3.9)\left(8.85 \times 10^{-14}\right)}{200 \times 10^{-8}}=1.726 \times 10^{-7} \mathrm{~F} / \mathrm{cm}^{2}

From Equation (10.82), we find the body-effect coefficient to be

\begin{aligned}\gamma=& \frac{\sqrt{2 e \epsilon_{s} N_{a}}}{C_{o x}} \\ \end{aligned}     (10.82)

\begin{aligned}\gamma &=\frac{\sqrt{2 e \epsilon_{s} N_{a}}}{C_{o x}}=\frac{\left[2\left(1.6 \times 10^{-19}\right)(11.7)\left(8.85 \times 10^{-14}\right)\left(3 \times 10^{16}\right)\right]^{1 / 2}}{1.726 \times 10^{-7}}\end{aligned}

or

\gamma=0.5776 \mathrm{~V}^{1 / 2}

The change in threshold voltage for V_{S B}=1 \mathrm{~V} is found to be

\begin{aligned}\Delta V_{T} &=\gamma\left[\sqrt{2 \phi_{f p}+V_{S B}}-\sqrt{2 \phi_{f p}}\right] \\&=(0.5776)[\sqrt{2(0.3758)+1}-\sqrt{2(0.3758)}] \\&=(0.5776)[1.3235-0.8669]=0.264 \mathrm{~V}\end{aligned}

Comment

Figure 10.51 shows plots of \sqrt{I_{D}(\text { sat })} versus V_{G S} for various applied values of V_{S B}. The original threshold voltage is assumed to be V_{T O}=0.64 \mathrm{~V}.

10-9

Related Answered Questions