Question 10.1: Calculate the maximum space charge width for a given semicon...

Calculate the maximum space charge width for a given semiconductor doping concentration.

Consider silicon at T=300 \mathrm{~K} doped to N_{a}=10^{16} \mathrm{~cm}^{-3}. The intrinsic carrier concentration is n_{i}=1.5 \times 10^{10} \mathrm{~cm}^{-3}.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Equation (10.4), we have

\phi_{f p}=V_{t} \ln \left(\frac{N_{a}}{n_{i}}\right)     (10.4)

\phi_{f p}=V_{t} \ln \left(\frac{N_{a}}{n_{i}}\right)=(0.0259) \ln \left(\frac{10^{16}}{1.5 \times 10^{10}}\right)=0.3473 \mathrm{~V}

Then the maximum space charge width is

x_{d T}=\left[\frac{4 \epsilon_{s} \phi_{f p}}{e N_{a}}\right]^{1 / 2}=\left[\frac{4(11.7)\left(8.85 \times 10^{-14}\right)(0.3473)}{\left(1.6 \times 10^{-19}\right)\left(10^{16}\right)}\right]^{1 / 2}

or

x_{d T} \cong 0.30 \times 10^{-4} \mathrm{~cm}=0.30 \mu \mathrm{m}

Comment

The maximum induced space charge width is on the same order of magnitude as pn junction space charge widths.

Related Answered Questions