Question 10.4: Calculate the threshold voltage of a MOS system using an alu...

Calculate the threshold voltage of a MOS system using an aluminum gate. Consider a p-type silicon substrate at T=300 \mathrm{~K} doped to N_{a}=10^{15} \mathrm{~cm}^{-3} . Let Q_{s s}^{\prime}= 10^{10} \mathrm{~cm}^{-2}, t_{o x}=12 \mathrm{~nm}=120 \mathring{A}, and assume the oxide is silicon dioxide.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Figure 10.16, we find \phi_{m s} \cong-0.88 \mathrm{~V}. The other parameters are

\phi_{f p}=V_{t} \ln \left(\frac{N_{a}}{n_{i}}\right)=(0.0259) \ln \left(\frac{10^{15}}{1.5 \times 10^{10}}\right)=0.2877 \mathrm{~V}

and

x_{d T}=\left\{\frac{4 \epsilon_{s} \phi_{f p}}{e N_{a}}\right\}^{1 / 2}=\left\{\frac{4(11.7)\left(8.85 \times 10^{-14}\right)(0.2877)}{\left(1.6 \times 10^{-19}\right)\left(10^{15}\right)}\right\}^{1 / 2}=8.63 \times 10^{-5} \mathrm{~cm}

Then

\left|Q_{S D}^{\prime}(\max )\right|=e N_{a} x_{d T}=\left(1.6 \times 10^{-19}\right)\left(10^{15}\right)\left(8.63 \times 10^{-5}\right)=1.381 \times 10^{-8} \mathrm{C} / \mathrm{cm}^{2}

The threshold voltage is now found to be

\begin{aligned}V_{T N}=&\left(\left|Q_{S D}^{\prime}(\max )\right|-Q_{s s}^{\prime}\right)\left(\frac{t_{o x}}{\epsilon_{o x}}\right)+\phi_{m s}+2 \phi_{f p} \\ =&\left[\left(1.381 \times 10^{-8}\right)-\left(10^{10}\right)\left(1.6 \times 10^{-19}\right)\right] \cdot\left[\frac{120 \times 10^{-8}}{(3.9)\left(8.85 \times 10^{-14}\right)}\right] \\ &+(-0.88)+2(0.2877) \end{aligned}

or

V_{T N}=-0.262 \mathrm{~V}

Comment

In this example, the semiconductor is fairly lightly doped, which, in conjunction with the positive charge in the oxide and the work function difference, is sufficient to induce an electron inversion layer charge even with zero applied gate voltage. This condition makes the threshold voltage negative.

10-3+4+5

Related Answered Questions